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Abstract

The aim of the dissertation is to introduce the reader to the world of granular

computing derived from Polkowski’s methods in terms of rough set theory [19]. Our

goal was to expand our knowledge of this particular niche of data analysis. To

present our new approximation techniques for decision systems in the area of

classification. In particular, we plan to show exemplary new results using known

granulation methods, but also a new method that does not require parameter

estimation - homogeneous granulation. Its use for missing values handling, its use

in an ensemble model (a competitive technique to other ensemble models

including boosting and bagging) and the epsilon variant applied to numerical data.

An additional aim is to test the performance of the aforementioned granulation

methods in combination with oversampling. Our methods are dedicated to

reducing the size of decision-making systems while extracting the most important

information - maintaining classification efficiency. In the dissertation, we will

present, among others, results that were accepted or recognized in the competition

- PP-RAI Contest for the Most Influential Article on Rough Sets co-authored by

Polish Researchers in 2020-2021 papers [36] and [4]. In order to achieve the aim of

the dissertation, the following theses have been formulated:

(i) It is possible to design a knowledge granulation method that does not require

the estimation of the optimal parameter value for the granulation radius,

(ii) The use of knowledge granules can have an effective application in reinforcing

classification processes in Ensemble models,

(iii) The use of knowledge granules can have wide application in various data

analysis processes - including the absorption of missing values,

(iv) Oversampling and undersampling techniques affect the process of creating

granular reflections of decision-making systems.
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Streszczenie

Celem rozprawy jest wprowadzenie czytelnika w świat obliczeń granularnych

wywodzących się z metod Polkowskiego w terminach teorii zbiorów przybliżonych

[19]. Jednym z celów było poszerzenie wiedzy na temat tej szczególnej niszy

analizy danych i zaprezentowanie nowych technik aproksymacji dla systemów

decyzyjnych w obszarze klasyfikacji. Praca w szczególności koncentruje się na

pokazaniu przykładowych nowych wyników granulacji przy użyciu znanych metod,

ale także nowej metody, która nie wymaga estymacji parametrów - granulację

jednorodną. Opisano wyniki jej zastosowania do obsługi brakujących wartości w

danych, wykorzystania w modelu zespołowym (technika konkurencyjna do innych

modeli zespołowych, w tym boosting i bagging) oraz użycia w wariancie epsilon

zastosowanym do danych numerycznych. Dodatkowym celem jest przetestowanie

wydajności wyżej wymienionych metod granulacji w połączeniu z

nadpróbkowaniem (ang. oversampling). Przedstawione metody mają na celu

zmniejszenie rozmiaru systemów decyzyjnych przy jednoczesnym wydobyciu

najważniejszych informacji - zachowaniu skuteczności klasyfikacji. W rozprawie

zaprezentujemy m.in. wyniki, które zostały zaakceptowane lub wyróżnione w

konkursie PP-RAI Contest for the Most Influential Article on Rough Sets

co-authored by Polish Researchers in 2020-2021 w publikacjach [36] i [4]. Aby

osiągnąć cel dysertacji, sformułowano następujące tezy:

(i) Możliwe jest zaprojektowanie metody granulacji wiedzy nie wymagającej

szacowania optymalnej wartości parametru promienia granulacji,

(ii) Zastosowanie granul wiedzy może mieć skuteczne zastosowanie we

wzmacnianiu procesów klasyfikacji w modelach zespołowych (ang. ensemble),

(iii) Zastosowanie granul wiedzy może mieć szerokie zastosowanie w różnych

procesach analizy danych - w tym w obsłudze wartości brakujących,

(iv) Techniki oversamplingu i undersamplingu wpływają na proces tworzenia

granularnych refleksji systemów decyzyjnych.
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Part I

Introduction



1. Research background

The theoretical foundations of this dissertation are in the area of rough set theory,

proposed by Z. Pawlak [19]. The considerations that form the foundation of the

theory of granular computing - which forms the basis of the methods used in the

dissertation - refer to works devoted to rough mereology, see [31, 32].

The theoretical part, closely related to the application layer, then introduces the

issues of granular computing, framed in terms of the granulation scheme proposed

by L. Polkowski, see [24, 25].

The next part of the dissertation introduces the concept of granular computing and

techniques for its use in the context of rough set theory.
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2. Granular computing and it’s applications

based on rough sets

2.1. Granular computing overview

Granular computing is not a specific method of processing data, it is a set of

paradigms that define what a granule can be in terms of structures, similarities and

patterns found in the data for different levels of granularity.

Granular computing can be based on various strategies, including the already

mentioned fuzzy sets [46] and rough sets [44],[21], [22] , but also based on

shadowed sets [20] or techniques related to data clustering [23], [42].

Lotfi A. Zadeh defined granules and granulation with these words:

Informally, granulation of an object A results in a collection of granules of

A, with a granule being a clump of objects (or points) which are drawn

together by indiscernibility, similarity, proximity or functionality. In this sense,

the granules of a human body are the head, neck, arms, chest, etc. In turn, the

granules of a head are the forehead, cheeks, nose, ears, eyes, hair, etc. In

general, granulation is hierarchical in nature. A familiar example is granulation

of time into years, years in months, months into days and so on.

L.A. Zadeh in [47]

In this dissertation, the concept of granularity will refer to granularity based on rough

inclusions [24, 25, 26].
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2.2. Polkowski’s standard and concept dependent granulation

2.2.1. Concept dependent granulation

The concept dependent granulation method described below proceeds analogously

to standard granulation [24, 25] except that granules are formed within the same

decision class.

The following steps describe the concept dependent granulation algorithm.

1. Loading the original decision system (U - universe of objects, A - non decision

attributes, d - decision attribute).

2. Specifying the radius of granulation rgran. Let the u, v ϵ U .

3. For each object u we analyze all objects v, looking at the attributes from A, we

form a granule gcd with center with object u, assuming that

v ϵ gcdrgran(u)⇔ µ(v, u, rgran) ∧ (d(u) = d(v)), (2.1)

i.e.

v ϵ gcdrgran ↔
(
|IND(u, v)|
|A|

≥ rgran

)
∧ (d(u) = d(v)), (2.2)

then

gcdrgran(u) =

{
v :

(
|IND(u, v)|
|A|

≥ rgran

)
∧ (d(u) = d(v))

}
(2.3)

µ is a rough inclusion, formally derived from Lukasiewicz’s t-norm [51].

4. We create granular coverage of the original decision system in one of the ways:

- hierarchical coverage (granules are selected by sequence)

- random selection of granules,

- selecting granules with minimal, mean or maximal length,

- selecting granules that convey the least, most or average number of new

objects, respectively,

- random selection of granules depending on concept size.

Whether a granule is in the coverage set depends on whether it passes at least

one new object.

The original decision system is considered covered when the unique set of

objects derived from the coverage granules overlaps with the entire original set

10



Table 2.1: The dataset used to demonstrate an example of how the
concept-dependent granulation algorithm works.

sepal_length sepal_width petal_length petal_width iris class

1 5.1 3.5 1.4 0.2 1
2 4.9 3.0 1.4 0.2 1
3 4.7 3.2 1.3 0.2 1
4 4.6 3.1 1.5 0.2 1
5 5.0 3.6 1.4 0.2 1
6 7.0 3.2 4.7 1.4 2
7 6.4 3.2 4.5 1.5 2
8 6.9 3.1 4.9 1.5 2
9 5.5 2.3 4.0 1.3 2
10 6.5 2.8 4.6 1.5 2
11 6.3 3.3 6.0 2.5 3
12 5.8 2.7 5.1 1.9 3
13 7.1 3.0 5.9 2.1 3
14 6.3 2.9 5.6 1.8 3
15 6.5 3.0 5.8 2.2 3

of objects. It means that granules with center of u meet the condition:

⋃
{gcdrgran(u) : gcdrgran(u) ∈ Ucover} = U. (2.4)

where Ucover denotes the set of granular coverage.

5. All objects in each granule are voting through a majority voting function which is

used to select a representative new object. All ties are resolved by random

choice. After all granules are processed, a new granular decision system is

formed.

A toy example of the concept-dependent granulation

The iris dataset was chosen as the base for this example. To make the whole

algorithm more comprehensible and easier to present in this document, only the

first five objects from each of the three decision-making classes were selected.

This slice of the dataset is shown in table 2.1.

Step 1: forming granules.

As you can see, the selected dataset contains three decision-making classes and

each object contains four descriptive attributes. This means that the granulation

process will be carried out for four granulation radii. In order to present a special
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case of granulation, it will also be carried out for radius zero, which means that we

treat all objects as indiscernible objects, which in practice will result in the creation

of a single object in the reflection set for a given decision class, which will contain

the most frequent attribute value at a given position (according to the principle of

majority voting).

An auxiliary step in the granulation process (especially in the implementation

phase) can be the creation of so-called indiscernibility matrices, which will be

created for each granulation radius and, in the case of concept dependent

granulation, for each decision class separately. Considering our case, we will obtain

15 such matrices (4 + 1 granulation radii * 3 unique decision classes). Due to the

rather large number of them, only the matrices for the decision class with a value of

1 are presented below.

Table 2.2: Indiscernibility matrix for radius 0/4(special case) and radius 1/4, concept
dependent granulation.

u1 u2 u3 u4 u5

u1 1 1 1 1 1
u2 1 1 1 1 1
u3 1 1 1 1 1
u4 1 1 1 1 1
u5 1 1 1 1 1

Table 2.3: Indiscernibility matrix for radius 2/4, concept dependent granulation.

u1 u2 u3 u4 u5

u1 1 1 0 0 1
u2 1 1 0 0 1
u3 0 0 1 0 0
u4 0 0 0 1 0
u5 1 1 0 0 1

12



Table 2.4: Indiscernibility matrix for radius 3/4 and 4/4, concept dependent
granulation.

u1 u2 u3 u4 u5

u1 1 0 0 0 0
u2 0 1 0 0 0
u3 0 0 1 0 0
u4 0 0 0 1 0
u5 0 0 0 0 1

Each indiscernibility matrix contains information about objects similar to each

other to a given degree and in a given decision class. Considering the case of a 1/4

granularity radius and its indiscernibility matrix, we will find values of 1 at the

intersection of objects that have at least one attribute with the same value. This will

allow us in subsequent granulation steps to find objects similar to each other and

form granules.

Similarly, in the matrix for radius 2/4, we will find values of 1 at the intersections of

objects that have two attributes with the same values. This means that they are

indiscernible from each other in degree 2. In this case, the objects are u1, u2 and u5.

We can also note that within this decision class (concept) there are no objects

similar to each other in degree 3 and degree 4.

Granules are collections of objects similar to each other, which will be formed for

each granulation radius separately in the granulation process. Granules are formed

around a given central object, which we can, by analogy, imagine as a process

similar to the well-known clustering methods. Each row from the indiscernibility

matrix above represents a single granule, around a given object for a given radius of

granulation. Formally, we will write the granules for a radius of 2/4 as follows:

g(u1): {u1, u2, u5}, g(u2): {u1, u2, u5}, g(u3): {u3}, g(u4): {u4}, g(u5): {u1, u2, u5}

Since listing all granules for each granulation radius and decision concept would

take up too much space, the view for a single concept (decision class = 1), for each

of the five granulation radii, is presented below.

Granules for radius 0/4 and 1/4

g(ui): {u1, u2, u3, u4, u5}, for i = 1, ..., 5

Granules for radius 2/4

g(u1): {u1, u2, u5}, g(u2): {u1, u2, u5}, g(u3): {u3}, g(u4): {u4}, g(u5): {u1, u2, u5}

13



Granules for radius 3/4 and 4/4

g(u1): {u1}, fori = 1, ..., 5

As can be observed, as the radius of granulation increases, the number of objects

of individual granules decreases, which means that the set is moderately diverse

and contains objects similar to each other (or otherwise indiscernible) in the case

of selected 1 or 2 attributes, but comparing already 3 or 4 attributes objects are

unique in the set.

Step 2: covering original dataset with granules.

Granular coverage is a set of granules whose unique set of objects will cover 100%

of the set from which the granules originated. There are many strategies for

covering sets, which are listed above in this subsection on page 10 in point 4.

To better compare the results with other granulation methods, a hierarchical

coverage method was used, which means going through the granules in search of

new objects in the order of their origin (that is, also according to the original order

of objects in the initial set). Once again, we will use granules for radius 2/4.

We iterate through the granules and add them to the coverage set (the granules, not

the objects themselves) insofar as they provide objects that are not already in the

set:

Initialization

coverage = ∅

Iteration 1

We consider the granule g(u1): {u1, u2, u5}, which provides new objects, so it will be

added to the coverage.

So currently coverage = {g(u1)} : {u1, u2, u5}

Iteration 2

We consider the granule g(u2): {u1, u2, u5}, which does not provide any new object,

we skip it.

Iteration 3

We consider granule g(u3): {u3}, which provides a new object {u3}.

So currently coverage = {g(u1), g(u3)} : {u1, u2, u3, u5}

Iteration 4

14



We consider the granule g(u4): {u4}, which provides a new object {u4}.

So currently coverage = {g(u1), g(u3), g(u4)} : {u1, u2, u3, u4, u5}

We have reached the convergence of the initial set of objects with the set of

coverage, so we abort the possible further iteration.

Step 3: creating reflection dataset from coverage.

This stage involves selecting representatives of the coverage set that will form the

reflection set. This involves collecting all the occurrences of objects from the

previously selected granules, and then selecting one representative (object) for

each granule. Let’s consider an example using the set created in the previous step.

So we have coverage = {g(u1), g(u3), g(u4)}.

Initialization

reflection = ∅

Outer iteration 1

We take the granule g(u1) containing the objects {u1, u2, u5}, which when put

together look as follows:

sepal_length sepal_width petal_length petal_width iris class

1 5.1 3.5 1.4 0.2 1

2 4.9 3.0 1.4 0.2 1

5 5.0 3.6 1.4 0.2 1

At this stage, through the majority voting mechanism, the value of each attribute

will be determined. If there are multiple equal most frequent attribute values, such a

tie will be resolved randomly. Also taking into account the fact that the value of

each attribute is determined independently, there is often a situation where a new

object is created, which in the exact combination of attributes may not exist in the

original data.

Inner iteration 1

In our case, it looks as follows: sepal−length = {5.1, 4.9, 5.0}

The cardinality is identical for each value, so one of the values is selected by a

draw. Let’s assume that the value 5.1 is drawn.

15



new−object = {5.1, , , , 1}

Inner iteration 2

The situation with the next attribute is similar, let’s assume that the value 3.6 was

drawn new−object = {5.1, 3.6, , , 1}

Inner iteration 2 and 3

For the next two, the situation is obvious, since in both cases the attribute values

are identical for each object.

So in the end we have new−object = {5.1, 3.6, 1.4, 0.2, 1}, which is a single

representation of this granule.

reflection = {

{5.1, 3.6, 1.4, 0.2, 1}

}

Outer iteration 2 and 3

The next two granules contain only one object each, so they go directly into the

reflection set.

reflection = {

{5.1, 3.6, 1.4, 0.2, 1},

{4.7, 3.2, 1.3, 0.2, 1},

{4.6, 3.1, 1.5, 0.2, 1}

}

This is, of course, only a slice of the reflection set for one decision concept. We

can see that from the five objects of the original set in the process of granulation

we obtained only three objects in the reflective set, which, however, according to

the theory of rough sets, is a set representing internal knowledge to a degree

similar to the knowledge of the original set. In the following chapters, this will be

thoroughly presented and determined by comparing the classification measures on

the original and granulated sets using selected classification algorithms.

By running the experiment to the end already without dissecting each step, we can

obtain the following reflective sets for each degree of granulation and all decision

classes.
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Table 2.5: Reflection dataset for radius 0/4 (0.0), concept dependent granulation.

sepal_length sepal_width petal_length petal_width iris class

1 5.0 3.0 1.4 0.2 1.0
2 5.5 3.2 4.9 1.5 2.0
3 6.3 3.0 5.8 2.1 3.0

Table 2.6: Reflection dataset for radius 1/4 (0.25), concept dependent granulation.

sepal_length sepal_width petal_length petal_width iris class

1 5.1 3.1 1.4 0.2 1.0
2 7.0 3.2 4.5 1.5 2.0
3 6.4 3.2 4.7 1.5 2.0
4 5.5 2.3 4.0 1.3 2.0
5 6.3 3.3 6.0 1.8 3.0
6 5.8 2.7 5.1 1.9 3.0
7 7.1 3.0 5.9 2.1 3.0

Table 2.7: Reflection dataset for radius 2/4 (0.5), concept dependent granulation.

sepal_length sepal_width petal_length petal_width iris class

5.1 3.6 1.4 0.2 1.0
4.7 3.2 1.3 0.2 1.0
4.6 3.1 1.5 0.2 1.0
7.0 3.2 4.7 1.4 2.0
6.4 3.2 4.5 1.5 2.0
6.9 3.1 4.9 1.5 2.0
5.5 2.3 4.0 1.3 2.0
6.5 2.8 4.6 1.5 2.0
6.3 3.3 6.0 2.5 3.0
5.8 2.7 5.1 1.9 3.0
7.1 3.0 5.9 2.1 3.0
6.3 2.9 5.6 1.8 3.0
6.5 3.0 5.8 2.2 3.0
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Table 2.8: Reflection dataset for radius 3/4 (0.75), concept dependent granulation.

sepal_length sepal_width petal_length petal_width iris class

5.1 3.5 1.4 0.2 1.0
4.9 3.0 1.4 0.2 1.0
4.7 3.2 1.3 0.2 1.0
4.6 3.1 1.5 0.2 1.0
5.0 3.6 1.4 0.2 1.0
7.0 3.2 4.7 1.4 2.0
6.4 3.2 4.5 1.5 2.0
6.9 3.1 4.9 1.5 2.0
5.5 2.3 4.0 1.3 2.0
6.5 2.8 4.6 1.5 2.0
6.3 3.3 6.0 2.5 3.0
5.8 2.7 5.1 1.9 3.0
7.1 3.0 5.9 2.1 3.0
6.3 2.9 5.6 1.8 3.0
6.5 3.0 5.8 2.2 3.0

Table 2.9: Reflection dataset for radius 4/4 (1.0), concept dependent granulation.

sepal_length sepal_width petal_length petal_width iris class

5.1 3.5 1.4 0.2 1.0
4.9 3.0 1.4 0.2 1.0
4.7 3.2 1.3 0.2 1.0
4.6 3.1 1.5 0.2 1.0
5.0 3.6 1.4 0.2 1.0
7.0 3.2 4.7 1.4 2.0
6.4 3.2 4.5 1.5 2.0
6.9 3.1 4.9 1.5 2.0
5.5 2.3 4.0 1.3 2.0
6.5 2.8 4.6 1.5 2.0
6.3 3.3 6.0 2.5 3.0
5.8 2.7 5.1 1.9 3.0
7.1 3.0 5.9 2.1 3.0
6.3 2.9 5.6 1.8 3.0
6.5 3.0 5.8 2.2 3.0

Summary for concept dependent granulation

This detailed example of how concept dependent granulation works was intended

to convey as fully as possible the next steps of the entire algorithm. In the case of

the standard granulation described in the next subsection, some of the details in the

toy example section identical to those described here will be intentionally omitted.
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The granulation itself aims to find objects in the data that, for the adopted degree

of granulation, as closely as possible represent the internal knowledge while

covering the entire dataset with knowledge granules. Concept dependent

granulation here introduces the nuance of operating on subsets within the same

decision class.

The number of degrees of granulation is determined by the number of features of

the objects, and the choice of the optimal radius for solving a given problem can be

driven by the desire to maximize the quality of classification, maximize the

reduction in the number of objects, or find the optimal compromise between these

measures in a given case.

2.2.2. Standard granulation

Standard granulation consists in creating groups of objects indiscernible to a fixed

degree in terms of similarity relations and then covering the entire original universe

of objects with these groups. In other words, coverage involves selecting granules

with a specific selection strategy until the set of unique objects from the granules

overlaps with the set of unique objects of the granular dataset. The component

variables of granulation are how to determine the similarity of objects, the method

of covering the universe with granules (groups), and the methods of creating

granular representatives.

The following is the standard granulation procedure proposed by Polkowski in [24]

and [25].

1. Loading the original decision system (U - universe of objects, A - non decision

attributes, d - decision attribute).

2. Specifying the radius of granulation rgran. Let the u, v ϵ U .

3. For each object u we analyze all objects v, looking at the attributes from A, we

create a set IND(u, v) = {a ϵ A : a(u) = a(v)} and we form a granule g with

center with object u, assuming that

v ϵ grgran(u)⇔ µ(v, u, rgran)⇔
|IND(u, v)|
|A|

≥ rgran (2.5)

then
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grgran(u) =

{
v :
|IND(u, v)|
|A|

≥ rgran

}
. (2.6)

µ is a rough inclusion, formally derived from Lukasiewicz’s t-norm.

4. We create granular coverage of the original decision system in one of the ways:

— hierarchical coverage (granules are selected by sequence)

— random selection of granules,

— selecting granules with minimal, mean or maximal length,

— selecting granules that convey the least, most or average number of new

objects, respectively,

— random selection of granules depending on concept size.

Whether a granule is in the coverage set depends on whether it passes at least

one new object.

The original decision system is considered covered when the unique set of

objects derived from the coverage granules overlaps with the entire original set

of objects. It means that granules with center of u meet the condition:

⋃
{grgran(u) : grgran(u) ∈ Ucover} = U. (2.7)

5. All objects in each granule are voting through a majority voting function which is

used to select a representative new object. All ties are resolved by random

choice. After all granules are processed, a new granular decision system is

formed.

A toy example of the standard granulation.

As mentioned, this example will not be as detailed as for concept-dependent

granulation, but the same data will be used to make it easier to compare results.

The data is presented in the table 2.1.

Step 1: forming granules.

As in the case of concept-dependent granulation, we will start by generating

indiscernibility matrices, which in the case of standard granulation will be of size

|U |x|U | i.e. here 15x15 since there is no division of the matrix into decision classes.
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Table 2.10: Indiscernibility matrix for radius 0/4 (0.0)), standard granulation.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

u1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
u2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
u15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2.11: Indiscernibility matrix for radius 1/4 (0.25), standard granulation.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

u1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
u2 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1
u3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
u4 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0
u5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
u6 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
u7 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0
u8 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0
u9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
u10 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1
u11 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
u12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
u13 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
u14 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
u15 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1

Table 2.12: Indiscernibility matrix for radius 2/4 (0.5), standard granulation.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

u1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
u2 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
u3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
u4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
u5 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
u6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
u7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
u8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
u9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
u10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
u11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
u12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
u13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
u14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
u15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Table 2.13: Indiscernibility matrix for radius 3/4 (0.75) and 4/4 (1.0), standard
granulation.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

u1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
u2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
u3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
u4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
u5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
u6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
u7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
u8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
u9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
u10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
u11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
u12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
u13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
u14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
u15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Analyzing the above matrices, we can quickly deduce what the granules will look

like, which we will formally write as follows.

Granules for radius 0/4

g(ui):{u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15}, for i = 1, ..., 15

Granules for radius 1/4

g(u1): {u1, u2, u3, u4, u5}, g(u2): {u1, u2, u3, u4, u5, u13, u15}, g(u3):

{u1, u2, u3, u4, u5, u6, u7}, g(u4): {u1, u2, u3, u4, u5, u8}, g(u5): {u1, u2, u3, u4, u5}, g(u6):

{u3, u6, u7}, g(u7): {u3, u6, u7, u8, u10}, g(u8): {u4, u7, u8, u10}, g(u9): {u9}, g(u10):

{u7, u8, u10, u15}, g(u11): {u11, u14}, g(u12): {u12}, g(u13): {u2, u13, u15}, g(u14): {u11, u14},

g(u15): {u2, u10, u13, u15}

Granules for radius 2/4

g(u1): {u1, u2, u5}, g(u2): {u1, u2, u5}, g(u3): {u3}, g(u4): {u4}, g(u5): {u1, u2, u5},g(u6): {u6},

g(u7): {u7}, g(u8): {u8}, g(u9): {u9}, g(u10): {u10}, g(u11): {u11}, g(u12): {u12}, g(u13): {u13},

g(u14): {u14}, g(u15): {u15},

Granules for radius 3/4 and 4/410,1

g(ui): {ui}, fori = 1, ...15

Step 2: covering original dataset.
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To find granular coverage, the same strategy will be used as in the example for

concept-dependent granulation, i.e. hierarchical coverage. In the case of standard

granulation, coverage is not done in individual decision concepts but for the entire

data set.

In the case of the 0/4 radius, the situation is obvious and the very first granule

contains all the objects and the selection process ends there.

So we have:

coverage for radii 0
4
= {g(u1)}

Other coverage collections look as follows.

coverage for radii 1
4
= {g(u1), g(u2), g(u3), g(u4), g(u7), g(u9), g(u11), g(u12)}

coverage for radii 2
4
= {g(u1), g(u3), g(u4), g(u6), g(u7), g(u8), g(u9), g(u10), g(u11),

g(u12), g(u13), g(u14), g(u15)}

coverage for radii 3
4
= {g(u1), g(u2), g(u3), g(u4), g(u5), g(u6), g(u7), g(u8), g(u9), g(u10),

g(u11), g(u12), g(u13), g(u14), g(u15)}

coverage for radii 4
4
= {g(u1), g(u2), g(u3), g(u4), g(u5), g(u6), g(u7), g(u8), g(u9), g(u10),

g(u11), g(u12), g(u13), g(u14), g(u15)}

Step 3: creating reflection dataset from coverage.

The main difference between standard granularity and concept-dependent

granularity is that for the former, for a granularity radius of 0, only one object will be

obtained, whose value for the decision class will take the value of the most

numerous class or, in the case of a tie, a randomly selected class value. Therefore,

we treat this case as an extreme case and in practice it is difficult to use its effect

in a real scenario. Since in the case studied each of the three classes is equidistant,

for each run of standard granulation we can get a similar value of attributes with

one of the three values of the decision class.

Table 2.14: Reflection dataset for radius 0/4, standard granulation.

sepal_length sepal_width petal_length petal_width iris class

6.5 3.0 1.4 0.2 1.0
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Table 2.15: Reflection dataset for radius 1/4, standard granulation.

sepal_length sepal_width petal_length petal_width iris class

4.6 3.5 1.4 0.2 1.0
7.1 3.0 1.4 0.2 1.0
7.0 3.2 1.4 0.2 1.0
5.0 3.1 1.4 0.2 1.0
7.0 3.2 1.3 1.5 2.0
5.5 2.3 4.0 1.3 2.0
6.3 3.3 5.6 2.5 3.0
5.8 2.7 5.1 1.9 3.0

Table 2.16: Reflection dataset for radius 2/4, standard granulation.

sepal_length sepal_width petal_length petal_width iris class

4.9 3.0 1.4 0.2 1.0
4.7 3.2 1.3 0.2 1.0
4.6 3.1 1.5 0.2 1.0
7.0 3.2 4.7 1.4 2.0
6.4 3.2 4.5 1.5 2.0
6.9 3.1 4.9 1.5 2.0
5.5 2.3 4.0 1.3 2.0
6.5 2.8 4.6 1.5 2.0
6.3 3.3 6.0 2.5 3.0
5.8 2.7 5.1 1.9 3.0
7.1 3.0 5.9 2.1 3.0
6.3 2.9 5.6 1.8 3.0
6.5 3.0 5.8 2.2 3.0
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Table 2.17: Reflection dataset for radius 3/4, standard granulation.

sepal_length sepal_width petal_length petal_width iris class

5.1 3.5 1.4 0.2 1.0
4.9 3.0 1.4 0.2 1.0
4.7 3.2 1.3 0.2 1.0
4.6 3.1 1.5 0.2 1.0
5.0 3.6 1.4 0.2 1.0
7.0 3.2 4.7 1.4 2.0
6.4 3.2 4.5 1.5 2.0
6.9 3.1 4.9 1.5 2.0
5.5 2.3 4.0 1.3 2.0
6.5 2.8 4.6 1.5 2.0
6.3 3.3 6.0 2.5 3.0
5.8 2.7 5.1 1.9 3.0
7.1 3.0 5.9 2.1 3.0
6.3 2.9 5.6 1.8 3.0
6.5 3.0 5.8 2.2 3.0

Table 2.18: Reflection dataset for radius 4/4, standard granulation.

sepal_length sepal_width petal_length petal_width iris class

5.1 3.5 1.4 0.2 1.0
4.9 3.0 1.4 0.2 1.0
4.7 3.2 1.3 0.2 1.0
4.6 3.1 1.5 0.2 1.0
5.0 3.6 1.4 0.2 1.0
7.0 3.2 4.7 1.4 2.0
6.4 3.2 4.5 1.5 2.0
6.9 3.1 4.9 1.5 2.0
5.5 2.3 4.0 1.3 2.0
6.5 2.8 4.6 1.5 2.0
6.3 3.3 6.0 2.5 3.0
5.8 2.7 5.1 1.9 3.0
7.1 3.0 5.9 2.1 3.0
6.3 2.9 5.6 1.8 3.0
6.5 3.0 5.8 2.2 3.0

Summary for standard granulation

Comparing the reflective datasets of concept-dependent and standard granulation,

several differences can be observed.

Although both techniques ultimately yielded a very similar number of objects in

each reflection set (ignoring the aforementioned 0 radius), one can observe
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significant differences in the number of objects in each decision class at a

granulation radius of 1/4.

The largest of these will be in the pair with smaller granulation radii, where

indiscernibility in the context of rough mereology will be greater. In addition, if this

indiscernibility between decision classes is small then standard granulation will

also yield a greater reduction in the number of objects relative to

concept-dependent granulation, however, the consequence is the possibility of

losing information about the actual decision class of a given object through

majority voting taking place between decision concepts. This typically leads to

lower classification accuracy than concept-dependent granulation.

Both granulation techniques, however, require the identification of multiple

reflective systems depending on the number of attributes and, in the case of

concept dependent granulation, also the cardinality of each decision class. Then, in

the process of evaluating the classification on each reflection set, a trade-off can

be determined between the reduction of its size and the accuracy of the

classification, that is, the choice of the optimal granulation radius at a given time.

In the next chapter, a new granulation method named homogeneous granulation

will be presented that does not require estimation of the optimal radius and the

results of the experiments that have been carried out will make it possible to

compare its main features and effectiveness compared to the methods presented

in this chapter.

2.3. Layered granulation

Layered granulation [1] is an extension of previously presented approaches as

granulation repeated recursively on previously generated reflection dataset from the

original data. This idea was introduced in order to investigate the impact on the data

by multiple granulation of it. Results of a different granulation techniques used in

this thesis are presented in the experimental part.
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2.4. Experimental part

2.4.1. Introduction

This section first describes all the datasets that were used in all the granulation and

classification experiments described in this dissertation. Then there is the

methodology of the research carried out in this chapter, as well as a collection and

description of the results obtained in standard granulation, concept dependent

granulation and layered granulation.

2.4.2. Datasets description

The following datasets were selected for experiments conducted with the methods

presented in this dissertation the following datasets selected from the UCI

repository [16] and from kaggle.com website.

Originally, some of the sets contained missing values, but due to the nature of the

algorithms presented here, these rows were removed from the sets in the

preprocessing phase. For this reason, the counts of individual observations for the

mushroom and adult datasets differ from those presented on the official UCI

repository website.

The preprocessing phase also included the removal of features that contained

observation identifiers, such as in the breast cancer collection. Some of the data,

although presented as integer values in the table below, was described as a

categorical feature in the source, hence in the process of experimental research it

was decided to also use those sets with features coded using the one-hot

technique, which resulted in an increase in the number of features. This was done

with the collection of australian credit (statlog) and that dataset was named

australian dummy. Also for the wine quality dataset, a different approach was used,

where experiments were conducted on three sets: only observations for red wine,

observations for white wine and both sets combined into one.
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Table 2.19: List of used datasets in the experimental sessions.

name # objects # features # classes data types missing values

1 iris 150 4 3 float False
2 australian credit 690 14 2 int, float False
3 australian dummy 689 38 2 int, float False
4 heart 303 13 2 int, float False
5 pima 768 8 2 int, float False
6 breast 569 29 2 float False
7 mushroom 5644 22 2 categorical False
8 red wine 1599 11 6 float False
9 white wine 4898 11 7 float False
10 wine merged 6496 12 7 float, int False
11 adult 45222 14 2 int, categorical False

Some features of the datasets have a direct impact on the final classification results, aside

from the variety of feature values, and one of them is undoubtedly decision class balance.

The analysis of the distribution of decision classes will be repeated after granulation and

compared with the baseline distribution, which will also provide a better understanding of

the internal structure of each set’s data and a better understanding of the possible

difference in classification results before and after data granulation.
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Below the distribution of these values for each dataset used is placed.

Dataset: iris

class count

1 50

2 50

3 50

Dataset: australian credit

class count

0 383

1 307
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Dataset: australian credit dummy

class count

0 382

1 307

Dataset: heart disease

class count

1 165

0 138
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Dataset: pima

class count

0 500

1 268

Dataset: breast

class count

B (0) 357

M (1) 212
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Dataset: mushroom

class count

e (0) 4208

p (1) 3916

Dataset: red wine

class count

5 681

6 638

7 199

4 53

8 18

3 10
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Dataset: white wine

class count

6 2198

5 1457

7 880

8 175

4 163

3 20

9 5

Dataset: wine merged

class count

6 2836

5 2137

7 1079

4 216

8 193

3 30

9 5
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Dataset: adult

class count

<= 50K (0) 34014

> 50K (1) 11208

The datasets with categorical labels (breast, mushroom, adult) were number encoded to

speed up computations and simplify code developed during experiments. Those values are

placed in brackets near their categorical label values.

2.4.3. Methodology

The experimental part using different granulation techniques described in the following

subsections was performed on the same datasets. The granulation process was performed

10 times for each training data set to reduce the impact of randomness on the final results

and enable better comparison of the results. The sizes of granulated sets were compared

and, in subsequent steps, the impact of the granularity of each set on the quality of

classification measures compared to non-granulated sets.

The experimental part in this chapter will serve as reference results for the author’s

homogeneous granulation method described in section 3.1.

2.4.4. Concept dependent granulation experiments

The table below presents the averaged harvest size after 10 times concept dependent

granulation, which will also serve to compare the differences in these sizes for other

granulation techniques.
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Table 2.20: Detailed information about datasets sizes after 10-times concept
dependent granulation.

dataset radius obj. # min obj. # max obj. # mean % of all objects

0 adult 0.070 2 3 2.100 0.005

1 adult 0.140 3 6 4.400 0.010

2 adult 0.210 7 11 9.100 0.020

3 adult 0.290 18 29 21.700 0.048

4 adult 0.360 36 53 45.200 0.100

5 adult 0.430 104 127 117.600 0.260

6 adult 0.500 277 301 289.100 0.639

7 adult 0.570 689 728 707.200 1.564

8 adult 0.640 1707 1811 1752.300 3.875

9 adult 0.710 4258 4369 4333.800 9.583

10 adult 0.790 10572 10711 10624.200 23.493

11 adult 0.860 23353 23407 23381.500 51.704

12 adult 0.930 39163 39182 39175.500 86.629

13 adult 1.000 45175 45175 45175.000 99.896

14 australian 0.070 2 3 2.300 0.333

15 australian 0.140 2 4 3.500 0.507

16 australian 0.210 4 7 5.200 0.754

17 australian 0.290 8 13 9.900 1.435

18 australian 0.360 15 22 17.700 2.565

19 australian 0.430 32 39 35.400 5.130

20 australian 0.500 75 85 79.700 11.551

21 australian 0.570 169 185 178.300 25.841

22 australian 0.640 368 382 376.700 54.594

23 australian 0.710 561 577 570.000 82.609

24 australian 0.790 664 667 666.000 96.522

25 australian 0.860 683 683 683.000 98.986

26 australian 0.930 685 685 685.000 99.275

27 australian 1.000 690 690 690.000 100.000

28 - 47 australian_dummy 0.03 - 0.53 2 2 2.000 0.290

48 australian_dummy 0.550 2 3 2.300 0.334

49 australian_dummy 0.580 2 5 3.000 0.435

50 australian_dummy 0.610 3 6 4.200 0.610

51 australian_dummy 0.630 4 7 5.600 0.813

Continued on next page
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dataset radius obj. # min obj. # max obj. # mean % of all objects

52 australian_dummy 0.660 6 11 8.900 1.292

53 australian_dummy 0.680 12 17 13.500 1.959

54 australian_dummy 0.710 18 22 20.800 3.019

55 australian_dummy 0.740 31 39 34.400 4.993

56 australian_dummy 0.760 53 61 58.900 8.549

57 australian_dummy 0.790 78 100 92.500 13.425

58 australian_dummy 0.820 150 178 164.200 23.832

59 australian_dummy 0.840 260 273 266.300 38.650

60 australian_dummy 0.870 430 440 434.800 63.106

61 australian_dummy 0.890 585 592 588.900 85.472

62 australian_dummy 0.920 666 667 666.800 96.778

63 australian_dummy 0.950 682 682 682.000 98.984

64 australian_dummy 0.970 684 684 684.000 99.274

65 australian_dummy 1.000 689 689 689.000 100.000

66 breast 0.030 237 251 242.300 42.583

67 breast 0.070 544 544 544.000 95.606

68 breast 0.100 557 557 557.000 97.891

69 breast 0.130 557 557 557.000 97.891

70 breast 0.170 557 557 557.000 97.891

71 breast 0.200 557 557 557.000 97.891

72 breast 0.230 568 568 568.000 99.824

73 - 95 breast 0.27 - 1. 569 569 569.000 100.000

96 heart 0.080 2 3 2.400 0.792

97 heart 0.150 2 4 2.900 0.957

98 heart 0.230 4 8 5.500 1.815

99 heart 0.310 8 13 10.300 3.399

100 heart 0.380 17 21 18.800 6.205

101 heart 0.460 38 46 41.400 13.663

102 heart 0.540 84 96 88.900 29.340

103 heart 0.620 155 168 161.200 53.201

104 heart 0.690 240 250 244.000 80.528

105 heart 0.770 287 290 288.600 95.248

106 - 108 heart 0.850 - 1.000 302 302 302.000 99.670

109 iris 0.250 22 27 24.600 16.400

110 iris 0.500 68 75 70.300 46.867

111 iris 0.750 131 133 131.900 87.933
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112 iris 1.000 147 147 147.000 98.000

113 - 115 mushroom 0.050 - 0.140 2 2 2.000 0.035

116 mushroom 0.180 2 3 2.200 0.039

117 mushroom 0.230 2 3 2.100 0.037

118 mushroom 0.270 2 5 3.000 0.053

119 mushroom 0.320 3 7 4.900 0.087

120 mushroom 0.360 5 9 6.700 0.119

121 mushroom 0.410 6 11 8.300 0.147

122 mushroom 0.450 7 16 11.100 0.197

123 mushroom 0.500 12 24 16.500 0.292

124 mushroom 0.550 13 31 22.000 0.390

125 mushroom 0.590 20 33 23.600 0.418

126 mushroom 0.640 24 35 29.800 0.528

127 mushroom 0.680 33 45 38.900 0.689

128 mushroom 0.730 29 40 35.000 0.620

129 mushroom 0.770 34 51 42.200 0.748

130 mushroom 0.820 59 75 67.500 1.196

131 mushroom 0.860 130 148 140.900 2.496

132 mushroom 0.910 355 388 371.900 6.589

133 mushroom 0.950 1299 1337 1320.000 23.388

134 mushroom 1.000 5644 5644 5644.000 100.000

135 pima 0.120 30 41 35.700 4.648

136 pima 0.250 165 183 176.600 22.995

137 pima 0.380 430 452 441.800 57.526

138 pima 0.500 657 672 663.400 86.380

139 pima 0.620 761 762 761.400 99.141

140 - 142 pima 0.75 - 1. 768 768 768.000 100.000

143 red_wine 0.090 82 92 86.100 5.385

144 red_wine 0.180 355 385 367.700 22.996

145 red_wine 0.270 928 951 938.300 58.680

146 red_wine 0.360 1268 1272 1269.900 79.418

147 red_wine 0.450 1324 1324 1324.000 82.802

148 red_wine 0.550 1339 1339 1339.000 83.740

149 red_wine 0.640 1345 1345 1345.000 84.115

150 red_wine 0.730 1350 1350 1350.000 84.428

151 red_wine 0.820 1351 1351 1351.000 84.490

Continued on next page
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152 red_wine 0.910 1351 1351 1351.000 84.490

153 red_wine 1.000 1359 1359 1359.000 84.991

154 white_wine 0.090 118 130 123.700 2.526

155 white_wine 0.180 645 673 659.100 13.457

156 white_wine 0.270 2247 2300 2271.400 46.374

157 white_wine 0.360 3581 3596 3589.100 73.277

158 white_wine 0.450 3842 3843 3842.500 78.450

159 white_wine 0.550 3889 3889 3889.000 79.400

160 white_wine 0.640 3907 3908 3907.800 79.784

161 white_wine 0.730 3917 3917 3917.000 79.971

162 white_wine 0.820 3920 3920 3920.000 80.033

163 white_wine 0.910 3922 3922 3922.000 80.073

164 white_wine 1.000 3961 3961 3961.000 80.870

165 wine_merged 0.080 18 50 29.400 0.453

166 wine_merged 0.170 196 220 209.700 3.228

167 wine_merged 0.250 997 1044 1021.700 15.728

168 wine_merged 0.330 3182 3231 3206.300 49.358

169 wine_merged 0.420 4849 4863 4855.400 74.744

170 wine_merged 0.500 5164 5165 5164.600 79.504

171 wine_merged 0.580 5226 5226 5226.000 80.450

172 wine_merged 0.670 5250 5251 5250.500 80.827

173 wine_merged 0.750 5265 5265 5265.000 81.050

174 wine_merged 0.830 5269 5269 5269.000 81.111

175 wine_merged 0.920 5271 5271 5271.000 81.142

176 wine_merged 1.000 5320 5320 5320.000 81.897

In the table above columns have the following meaning:

— dataset - a dataset name

— radius - granulation radius in the range [0,1]

— obj. # min - lowest number of objects that were included in the final granular dataset

— obj. # max - highest number of objects that were included in the final granular dataset

— obj. # mean - mean number of objects that were included in the final granular dataset

— % of all objects - the mean percentage value of objects in the granuled dataset vs the

original dataset size.

From observing this table, we can draw the first conclusions about the data sets

themselves. The smaller the size of the granulated set for a given granulation radius, the

38



smaller the diversity of the set of objects within the decision classes and the better the

effects of reducing the size of sets are achieved. We can also note that the

non-deterministic nature of the granulation algorithm can have a significant impact on the

size of the granulated set depending on the diversity of its objects. The minimum and

maximum size of some sets with smaller granulation radii differs quite significantly. The

impact of this granularity on the data can be better explored by using classification models

using granular and original data.

We can also immediately notice sets with a high diversity of observations where, with low

granulation radii, the number of objects in the coverage set is close to or equal 100% as we

can observe in the breast dataset. In such a case, the effect of granulation is negligible or

non-existent, but in such a case better granulation effects can be achieved by using epsilon

granulation, in which we define a certain threshold of similarity (epsilon) between attribute

values, thanks to which we can achieve a higher degree of indiscernibility of objects.

Another important factor which can be influenced by a data granulation is class balance in

each granulation radii. Depending on data diversity in each decision class this initial

balance can be disturbed or reversed. A good example is an australian dataset shown in

the table 2.21 where the class balance for lower granulation radiuses changes so that the

dominance between classes rotates with the next granulation radius.

Table 2.21: Detailed information about datasets decision class balance (average
value) after 10-times concept dependent granulation.

dataset radius class_balance

0 iris 0.250 1: 6.0, 2: 9.0, 3: 10.0

1 iris 0.500 1: 17.0, 2: 25.0, 3: 28.0

2 iris 0.750 1: 39.0, 2: 46.0, 3: 47.0

3 iris 1.000 1: 48.0, 2: 50.0, 3: 49.0

4 australian 0.071 0: 1.0, 1: 1.0

5 australian 0.143 0: 2.0, 1: 2.0

6 australian 0.214 0: 3.0, 1: 3.0

7 australian 0.286 0: 5.0, 1: 4.0

8 australian 0.357 0: 10.0, 1: 8.0

9 australian 0.429 0: 18.0, 1: 18.0

10 australian 0.500 0: 39.0, 1: 41.0

11 australian 0.571 0: 84.0, 1: 94.0

12 australian 0.643 0: 167.0, 1: 210.0
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13 australian 0.714 0: 290.0, 1: 280.0

14 australian 0.786 0: 363.0, 1: 303.0

15 australian 0.857 0: 379.0, 1: 304.0

16 australian 0.929 0: 380.0, 1: 305.0

17 australian 1.000 0: 383.0, 1: 307.0

18 - 38 australian_dummy 0.026 - 0.553 0: 1.0, 1: 1.0

39 australian_dummy 0.579 0: 1.0, 1: 2.0

40 australian_dummy 0.605 0: 2.0, 1: 2.0

41 australian_dummy 0.632 0: 2.0, 1: 3.0

42 australian_dummy 0.658 0: 4.0, 1: 5.0

43 australian_dummy 0.684 0: 6.0, 1: 7.0

44 australian_dummy 0.711 0: 11.0, 1: 10.0

45 australian_dummy 0.737 0: 16.0, 1: 18.0

46 australian_dummy 0.763 0: 29.0, 1: 30.0

47 australian_dummy 0.789 0: 48.0, 1: 45.0

48 australian_dummy 0.816 0: 81.0, 1: 83.0

49 australian_dummy 0.842 0: 135.0, 1: 131.0

50 australian_dummy 0.868 0: 206.0, 1: 229.0

51 australian_dummy 0.895 0: 303.0, 1: 286.0

52 australian_dummy 0.921 0: 364.0, 1: 303.0

53 australian_dummy 0.947 0: 378.0, 1: 304.0

54 australian_dummy 0.974 0: 379.0, 1: 305.0

55 australian_dummy 1.000 0: 382.0, 1: 307.0

56 heart 0.077 0: 1.0, 1: 1.0

57 heart 0.154 0: 2.0, 1: 1.0

58 heart 0.231 0: 3.0, 1: 2.0

59 heart 0.308 0: 6.0, 1: 5.0

60 heart 0.385 0: 10.0, 1: 9.0

61 heart 0.462 0: 22.0, 1: 20.0

62 heart 0.538 0: 48.0, 1: 41.0

63 heart 0.615 0: 85.0, 1: 76.0

64 heart 0.692 0: 123.0, 1: 121.0

65 heart 0.769 0: 136.0, 1: 153.0

66 heart 0.846 0: 138.0, 1: 164.0

67 heart 0.923 0: 138.0, 1: 164.0

68 heart 1.000 0: 138.0, 1: 164.0
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69 pima 0.125 0: 18.0, 1: 17.0

70 pima 0.250 0: 93.0, 1: 83.0

71 pima 0.375 0: 270.0, 1: 172.0

72 pima 0.500 0: 427.0, 1: 236.0

73 pima 0.625 0: 494.0, 1: 267.0

74 pima 0.750 0: 500.0, 1: 268.0

75 pima 0.875 0: 500.0, 1: 268.0

76 pima 1.000 0: 500.0, 1: 268.0

77 breast 0.033 ’B’: 139.0, ’M’: 104.0

78 breast 0.067 ’B’: 334.0, ’M’: 210.0

79 breast 0.100 ’B’: 345.0, ’M’: 212.0

80 breast 0.133 ’B’: 345.0, ’M’: 212.0

81 breast 0.167 ’B’: 345.0, ’M’: 212.0

82 breast 0.200 ’B’: 345.0, ’M’: 212.0

83 breast 0.233 ’B’: 356.0, ’M’: 212.0

84 - 106 breast 0.267 - 1. ’B’: 357.0, ’M’: 212.0

107 - 111 mushroom 0.045 - 0.227 ’e’: 1.0, ’p’: 1.0

112 mushroom 0.273 ’e’: 1.0, ’p’: 2.0

113 mushroom 0.318 ’e’: 2.0, ’p’: 3.0

114 mushroom 0.364 ’e’: 2.0, ’p’: 4.0

115 mushroom 0.409 ’e’: 3.0, ’p’: 5.0

116 mushroom 0.455 ’e’: 5.0, ’p’: 6.0

117 mushroom 0.500 ’e’: 9.0, ’p’: 8.0

118 mushroom 0.545 ’e’: 14.0, ’p’: 8.0

119 mushroom 0.591 ’e’: 15.0, ’p’: 9.0

120 mushroom 0.636 ’e’: 18.0, ’p’: 11.0

121 mushroom 0.682 ’e’: 26.0, ’p’: 13.0

122 mushroom 0.727 ’e’: 22.0, ’p’: 13.0

123 mushroom 0.773 ’e’: 26.0, ’p’: 16.0

124 mushroom 0.818 ’e’: 39.0, ’p’: 29.0

125 mushroom 0.864 ’e’: 82.0, ’p’: 59.0

126 mushroom 0.909 ’e’: 222.0, ’p’: 150.0

127 mushroom 0.955 ’e’: 805.0, ’p’: 515.0

128 mushroom 1.000 ’e’: 3488.0, ’p’: 2156.0

129 red_wine 0.091 3: 5.0, 4: 11.0, 5: 21.0, 6: 24.0, 7: 17.0, 8: 7.0

130 red_wine 0.182 3: 8.0, 4: 34.0, 5: 116.0, 6: 125.0, 7: 71.0, 8: 14.0
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131 red_wine 0.273 3: 10.0, 4: 49.0, 5: 362.0, 6: 363.0, 7: 137.0, 8: 17.0

132 red_wine 0.364 3: 10.0, 4: 53.0, 5: 526.0, 6: 504.0, 7: 160.0, 8: 17.0

133 red_wine 0.455 3: 10.0, 4: 53.0, 5: 561.0, 6: 520.0, 7: 163.0, 8: 17.0

134 red_wine 0.545 3: 10.0, 4: 53.0, 5: 567.0, 6: 527.0, 7: 165.0, 8: 17.0

135 red_wine 0.636 3: 10.0, 4: 53.0, 5: 571.0, 6: 529.0, 7: 165.0, 8: 17.0

136 red_wine 0.727 3: 10.0, 4: 53.0, 5: 574.0, 6: 531.0, 7: 165.0, 8: 17.0

137 red_wine 0.818 3: 10.0, 4: 53.0, 5: 575.0, 6: 531.0, 7: 165.0, 8: 17.0

138 red_wine 0.909 3: 10.0, 4: 53.0, 5: 575.0, 6: 531.0, 7: 165.0, 8: 17.0

139 red_wine 1.000 3: 10.0, 4: 53.0, 5: 577.0, 6: 535.0, 7: 167.0, 8: 17.0

140 white_wine 0.091 3: 8.0, 4: 18.0, 5: 27.0, 6: 28.0, 7: 23.0, 8: 16.0, 9: 4.0

141 white_wine 0.182 3: 16.0, 4: 74.0, 5: 176.0, 6: 200.0, 7: 130.0, 8: 58.0, 9: 5.0

142 white_wine 0.273 3: 20.0, 4: 139.0, 5: 672.0, 6: 897.0, 7: 426.0, 8: 114.0, 9: 5.0

143 white_wine 0.364 3: 20.0, 4: 150.0, 5: 1050.0, 6: 1601.0, 7: 634.0, 8: 129.0, 9: 5.0

144 white_wine 0.455 3: 20.0, 4: 150.0, 5: 1133.0, 6: 1736.0, 7: 668.0, 8: 130.0, 9: 5.0

145 white_wine 0.545 3: 20.0, 4: 150.0, 5: 1156.0, 6: 1756.0, 7: 672.0, 8: 130.0, 9: 5.0

146 white_wine 0.636 3: 20.0, 4: 151.0, 5: 1160.0, 6: 1766.0, 7: 675.0, 8: 131.0, 9: 5.0

147 white_wine 0.727 3: 20.0, 4: 152.0, 5: 1163.0, 6: 1767.0, 7: 679.0, 8: 131.0, 9: 5.0

148 white_wine 0.818 3: 20.0, 4: 153.0, 5: 1163.0, 6: 1768.0, 7: 680.0, 8: 131.0, 9: 5.0

149 white_wine 0.909 3: 20.0, 4: 153.0, 5: 1164.0, 6: 1769.0, 7: 680.0, 8: 131.0, 9: 5.0

150 white_wine 1.000 3: 20.0, 4: 153.0, 5: 1175.0, 6: 1788.0, 7: 689.0, 8: 131.0, 9: 5.0

151 wine_merged 0.083 3: 2.0, 4: 5.0, 5: 3.0, 6: 4.0, 7: 7.0, 8: 8.0, 9: 1.0

152 wine_merged 0.167 3: 13.0, 4: 30.0, 5: 49.0, 6: 58.0, 7: 42.0, 8: 24.0, 9: 4.0

153 wine_merged 0.250 3: 23.0, 4: 109.0, 5: 290.0, 6: 318.0, 7: 203.0, 8: 73.0, 9: 5.0

154 wine_merged 0.333 3: 30.0, 4: 188.0, 5: 1028.0, 6: 1256.0, 7: 560.0, 8: 131.0, 9: 5.0

155 wine_merged 0.417 3: 30.0, 4: 203.0, 5: 1575.0, 6: 2104.0, 7: 793.0, 8: 146.0, 9: 5.0

156 wine_merged 0.500 3: 30.0, 4: 203.0, 5: 1693.0, 6: 2257.0, 7: 830.0, 8: 147.0, 9: 5.0

157 wine_merged 0.583 3: 30.0, 4: 203.0, 5: 1722.0, 6: 2283.0, 7: 836.0, 8: 147.0, 9: 5.0

158 wine_merged 0.667 3: 30.0, 4: 204.0, 5: 1730.0, 6: 2295.0, 7: 838.0, 8: 148.0, 9: 5.0

159 wine_merged 0.750 3: 30.0, 4: 205.0, 5: 1736.0, 6: 2298.0, 7: 843.0, 8: 148.0, 9: 5.0

160 wine_merged 0.833 3: 30.0, 4: 206.0, 5: 1737.0, 6: 2299.0, 7: 844.0, 8: 148.0, 9: 5.0

161 wine_merged 0.917 3: 30.0, 4: 206.0, 5: 1738.0, 6: 2300.0, 7: 844.0, 8: 148.0, 9: 5.0

162 wine_merged 1.000 3: 30.0, 4: 206.0, 5: 1752.0, 6: 2323.0, 7: 856.0, 8: 148.0, 9: 5.0

163 adult 0.071 ’<= 50K ’: 1.0, ’> 50K ’: 1.0

164 adult 0.143 ’<= 50K ’: 2.0, ’> 50K ’: 2.0

165 adult 0.214 ’<= 50K ’: 4.0, ’> 50K ’: 5.0

166 adult 0.286 ’<= 50K ’: 12.0, ’> 50K ’: 10.0
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167 adult 0.357 ’<= 50K ’: 25.0, ’> 50K ’: 20.0

168 adult 0.429 ’<= 50K ’: 65.0, ’> 50K ’: 52.0

169 adult 0.500 ’<= 50K ’: 177.0, ’> 50K ’: 112.0

170 adult 0.571 ’<= 50K ’: 446.0, ’> 50K ’: 261.0

171 adult 0.643 ’<= 50K ’: 1159.0, ’> 50K ’: 593.0

172 adult 0.714 ’<= 50K ’: 3016.0, ’> 50K ’: 1317.0

173 adult 0.786 ’<= 50K ’: 7677.0, ’> 50K ’: 2947.0

174 adult 0.857 ’<= 50K ’: 17277.0, ’> 50K ’: 6104.0

175 adult 0.929 ’<= 50K ’: 29208.0, ’> 50K ’: 9968.0

176 adult 1.000 ’<= 50K ’: 33973.0, ’> 50K ’: 11202.0

Class balance sumary and differences between achived results in this chapter can be found

in section 2.4.6.

2.4.5. Standard granulation experiments

Below is a detailed table showing each crop and its averaged size after ten times the

standard granulation.

Table 2.22: Detailed information about datasets sizes after 10-times standard
granulation.

dataset radius obj. # min obj. # max obj. # mean % of all objects

0 australian 0.070 1 2 1.500 0.217

1 australian 0.140 1 3 2.100 0.304

2 australian 0.210 2 4 2.800 0.406

3 australian 0.290 3 8 5.300 0.768

4 australian 0.360 6 15 11.100 1.609

5 australian 0.430 18 27 22.500 3.261

6 australian 0.500 54 69 61.200 8.870

7 australian 0.570 143 156 149.800 21.710

8 australian 0.640 338 356 346.800 50.261

9 australian 0.710 547 562 554.000 80.290

10 australian 0.790 663 664 663.500 96.159
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11 australian 0.860 682 682 682.000 98.841

12 australian 0.930 684 684 684.000 99.130

13 australian 1.000 690 690 690.000 100.000

14 - 33 australian_dummy 0.030 - 0.530 1 1 1.000 0.145

34 australian_dummy 0.550 1 2 1.200 0.174

35 australian_dummy 0.580 1 3 1.600 0.232

36 australian_dummy 0.610 2 4 2.500 0.363

37 australian_dummy 0.630 2 5 2.700 0.392

38 australian_dummy 0.660 4 8 5.400 0.784

39 australian_dummy 0.680 6 10 8.100 1.176

40 australian_dummy 0.710 8 18 13.100 1.901

41 australian_dummy 0.740 17 26 22.000 3.193

42 australian_dummy 0.760 38 43 41.100 5.965

43 australian_dummy 0.790 64 78 70.900 10.290

44 australian_dummy 0.820 126 141 132.900 19.289

45 australian_dummy 0.840 222 240 232.000 33.672

46 australian_dummy 0.870 399 420 406.600 59.013

47 australian_dummy 0.890 569 577 572.900 83.149

48 australian_dummy 0.920 663 664 663.600 96.313

49 australian_dummy 0.950 681 681 681.000 98.839

50 australian_dummy 0.970 683 683 683.000 99.129

51 australian_dummy 1.000 689 689 689.000 100.000

52 breast 0.030 181 202 191.900 33.726

53 breast 0.070 544 544 544.000 95.606

54 breast 0.100 557 557 557.000 97.891

55 breast 0.130 557 557 557.000 97.891

56 breast 0.170 557 557 557.000 97.891

57 breast 0.200 557 557 557.000 97.891

58 breast 0.230 568 568 568.000 99.824

59 - 81 breast 0.270 - 1.000 569 569 569.000 100.000

82 heart 0.080 1 2 1.500 0.495

83 heart 0.150 1 3 2.300 0.759
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84 heart 0.230 2 6 3.500 1.155

85 heart 0.310 5 9 6.600 2.178

86 heart 0.380 10 17 13.600 4.488

87 heart 0.460 26 34 30.200 9.967

88 heart 0.540 67 78 71.800 23.696

89 heart 0.620 140 150 144.400 47.657

90 heart 0.690 235 242 238.300 78.647

91 heart 0.770 287 290 288.900 95.347

92 - 94 heart 0.850 - 1.000 302 302 302.000 99.670

95 iris 0.250 15 23 19.300 12.867

96 iris 0.500 63 72 66.800 44.533

97 iris 0.750 131 132 131.500 87.667

98 iris 1.000 147 147 147.000 98.000

99 - 101 mushroom 0.050 - 0.140 1 1 1.000 0.018

102 mushroom 0.180 1 2 1.200 0.021

103 mushroom 0.230 1 3 1.700 0.030

104 mushroom 0.270 1 4 1.900 0.034

105 mushroom 0.320 3 8 3.900 0.069

106 mushroom 0.360 5 8 6.300 0.112

107 mushroom 0.410 5 15 8.300 0.147

108 mushroom 0.450 8 14 10.300 0.182

109 mushroom 0.500 13 24 15.900 0.282

110 mushroom 0.550 12 26 20.400 0.361

111 mushroom 0.590 15 38 25.700 0.455

112 mushroom 0.640 22 39 29.100 0.516

113 mushroom 0.680 24 44 35.800 0.634

114 mushroom 0.730 26 48 37.800 0.670

115 mushroom 0.770 36 47 42.400 0.751

116 mushroom 0.820 60 76 67.700 1.200

117 mushroom 0.860 135 156 144.600 2.562

118 mushroom 0.910 367 406 381.700 6.763

119 mushroom 0.950 1313 1350 1328.200 23.533
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120 mushroom 1.000 5644 5644 5644.000 100.000

121 pima 0.120 18 25 21.300 2.773

122 pima 0.250 117 135 126.800 16.510

123 pima 0.380 375 398 389.700 50.742

124 pima 0.500 629 641 635.800 82.786

125 pima 0.620 757 758 757.300 98.607

126 pima 0.750 768 768 768.000 100.000

127 pima 0.880 768 768 768.000 100.000

128 pima 1.000 768 768 768.000 100.000

129 red_wine 0.090 25 32 28.000 1.751

130 red_wine 0.180 178 193 187.500 11.726

131 red_wine 0.270 716 732 722.400 45.178

132 red_wine 0.360 1218 1229 1223.300 76.504

133 red_wine 0.450 1316 1317 1316.800 82.351

134 red_wine 0.550 1337 1337 1337.000 83.615

135 red_wine 0.640 1345 1345 1345.000 84.115

136 red_wine 0.730 1350 1350 1350.000 84.428

137 red_wine 0.820 1351 1351 1351.000 84.490

138 red_wine 0.910 1351 1351 1351.000 84.490

139 red_wine 1.000 1359 1359 1359.000 84.991

140 white_wine 0.090 33 37 34.900 0.713

141 white_wine 0.180 260 284 269.000 5.492

142 white_wine 0.270 1464 1517 1496.000 30.543

143 white_wine 0.360 3303 3323 3311.000 67.599

144 white_wine 0.450 3811 3814 3812.000 77.828

145 white_wine 0.550 3874 3876 3875.100 79.116

146 white_wine 0.640 3900 3901 3900.800 79.641

147 white_wine 0.730 3916 3916 3916.000 79.951

148 white_wine 0.820 3920 3920 3920.000 80.033

149 white_wine 0.910 3922 3922 3922.000 80.073

150 white_wine 1.000 3961 3961 3961.000 80.870

151 wine_merged 0.080 2 8 4.000 0.062

Continued on next page
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dataset radius obj. # min obj. # max obj. # mean % of all objects

152 wine_merged 0.170 59 75 67.300 1.036

153 wine_merged 0.250 428 462 445.900 6.863

154 wine_merged 0.330 2186 2247 2214.400 34.083

155 wine_merged 0.420 4517 4542 4530.800 69.737

156 wine_merged 0.500 5123 5129 5126.900 78.912

157 wine_merged 0.580 5209 5211 5210.500 80.199

158 wine_merged 0.670 5243 5244 5243.700 80.710

159 wine_merged 0.750 5264 5264 5264.000 81.022

160 wine_merged 0.830 5269 5269 5269.000 81.099

161 wine_merged 0.920 5271 5271 5271.000 81.130

162 wine_merged 1.000 5320 5320 5320.000 81.884

During granulation, the original balance of classes in the set may change, which is also

important information in the context of the classification results presented later in this

chapter. Detailed information about the balance of classes after granulation using the

standard method can be found in the table 2.23.

Table 2.23: Detailed information about datasets decision class balance (average
value) after 10-times standard granulation.

dataset radius class_balance

0 iris 0.250 3: 8.0, 2: 6.0, 1: 5.0

1 iris 0.500 3: 27.0, 1: 18.0, 2: 21.0

2 iris 0.750 3: 47.0, 1: 38.0, 2: 46.0

3 iris 1.000 1: 48.0, 3: 49.0, 2: 50.0

4 australian 0.071 0: 2.0

5 australian 0.143 0: 2.0

6 australian 0.214 0: 3.0, 1: 0.0

7 australian 0.286 0: 3.0, 1: 2.0

8 australian 0.357 0: 8.0, 1: 4.0

9 australian 0.429 0: 13.0, 1: 10.0

10 australian 0.500 0: 33.0, 1: 28.0

11 australian 0.571 0: 75.0, 1: 75.0

12 australian 0.643 1: 186.0, 0: 161.0

Continued on next page
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dataset radius class_balance

13 australian 0.714 0: 285.0, 1: 269.0

14 australian 0.786 0: 363.0, 1: 301.0

15 australian 0.857 1: 304.0, 0: 378.0

16 australian 0.929 1: 305.0, 0: 379.0

17 australian 1.000 0: 383.0, 1: 307.0

18 - 38 australian_dummy 0.026 - 0.553 0: 1.0

39 australian_dummy 0.579 0: 2.0

40 australian_dummy 0.605 0: 2.0

41 australian_dummy 0.632 0: 3.0

42 australian_dummy 0.658 0: 5.0, 1: 1.0

43 australian_dummy 0.684 1: 3.0, 0: 5.0

44 australian_dummy 0.711 1: 4.0, 0: 9.0

45 australian_dummy 0.737 1: 8.0, 0: 14.0

46 australian_dummy 0.763 0: 25.0, 1: 16.0

47 australian_dummy 0.789 0: 42.0, 1: 29.0

48 australian_dummy 0.816 1: 60.0, 0: 73.0

49 australian_dummy 0.842 0: 120.0, 1: 112.0

50 australian_dummy 0.868 1: 212.0, 0: 195.0

51 australian_dummy 0.895 0: 299.0, 1: 274.0

52 australian_dummy 0.921 0: 362.0, 1: 302.0

53 australian_dummy 0.947 0: 377.0, 1: 304.0

54 australian_dummy 0.974 1: 305.0, 0: 378.0

55 australian_dummy 1.000 1: 307.0, 0: 382.0

56 heart 0.077 1: 2.0

57 heart 0.154 1: 2.0, 0: 0.0

58 heart 0.231 1: 3.0, 0: 1.0

59 heart 0.308 0: 3.0, 1: 4.0

60 heart 0.385 1: 7.0, 0: 6.0

61 heart 0.462 1: 15.0, 0: 15.0

62 heart 0.538 0: 35.0, 1: 37.0

63 heart 0.615 0: 72.0, 1: 72.0

64 heart 0.692 1: 120.0, 0: 119.0

65 heart 0.769 0: 135.0, 1: 154.0

66 heart 0.846 1: 164.0, 0: 138.0

67 heart 0.923 0: 138.0, 1: 164.0

68 heart 1.000 1: 164.0, 0: 138.0

Continued on next page
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dataset radius class_balance

69 pima 0.125 0: 21.0, 1: 0.0

70 pima 0.250 0: 108.0, 1: 18.0

71 pima 0.375 0: 268.0, 1: 122.0

72 pima 0.500 0: 417.0, 1: 219.0

73 pima 0.625 0: 493.0, 1: 265.0

74 pima 0.750 1: 268.0, 0: 500.0

75 pima 0.875 0: 500.0, 1: 268.0

77 breast 0.033 ’B’: 139.0, ’M’: 53.0

78 breast 0.067 ’B’: 334.0, ’M’: 210.0

79 breast 0.100 ’B’: 345.0, ’M’: 212.0

80 breast 0.133 ’M’: 212.0, ’B’: 345.0

81 breast 0.167 ’B’: 345.0, ’M’: 212.0

82 breast 0.200 ’M’: 212.0, ’B’: 345.0

83 breast 0.233 ’M’: 212.0, ’B’: 356.0

84 - 88 breast 0.267 - 0.400 ’B’: 357.0, ’M’: 212.0

89 breast 0.433 ’M’: 212.0, ’B’: 357.0

90 breast 0.467 ’B’: 357.0, ’M’: 212.0

91 breast 0.500 ’M’: 212.0, ’B’: 357.0

92 - 95 breast 0.533 - 0.633 ’B’: 357.0, ’M’: 212.0

96 - 98 breast 0.667 - 0.700 ’M’: 212.0, ’B’: 357.0

99 - 101 breast 0.767 - 0.833 ’B’: 357.0, ’M’: 212.0

102 breast 0.867 ’M’: 212.0, ’B’: 357.0

103 breast 0.900 ’B’: 357.0, ’M’: 212.0

104 breast 0.933 ’B’: 357.0, ’M’: 212.0

105 breast 0.967 ’M’: 212.0, ’B’: 357.0

106 breast 1.000 ’M’: 212.0, ’B’: 357.0

107 - 110 mushroom 0.045 - 0.182 ’e’: 1.0

111 mushroom 0.227 ’e’: 2.0

112 mushroom 0.273 ’e’: 2.0

113 mushroom 0.318 ’e’: 4.0

114 mushroom 0.364 ’e’: 6.0, ’p’: 0.0

115 mushroom 0.409 ’e’: 7.0, ’p’: 1.0

116 mushroom 0.455 ’e’: 6.0, ’p’: 4.0

117 mushroom 0.500 ’p’: 4.0, ’e’: 11.0

118 mushroom 0.545 ’e’: 16.0, ’p’: 4.0

119 mushroom 0.591 ’p’: 4.0, ’e’: 22.0

Continued on next page
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120 mushroom 0.636 ’e’: 25.0, ’p’: 4.0

121 mushroom 0.682 ’p’: 10.0, ’e’: 26.0

122 mushroom 0.727 ’e’: 23.0, ’p’: 15.0

123 mushroom 0.773 ’p’: 17.0, ’e’: 25.0

124 mushroom 0.818 ’e’: 40.0, ’p’: 28.0

125 mushroom 0.864 ’e’: 84.0, ’p’: 60.0

126 mushroom 0.909 ’p’: 151.0, ’e’: 231.0

127 mushroom 0.955 ’p’: 515.0, ’e’: 814.0

128 mushroom 1.000 ’e’: 3488.0, ’p’: 2156.0

129 red_wine 0.091 6: 9.0, 5: 19.0

130 red_wine 0.182 6: 79.0, 5: 106.0, 7: 3.0

131 red_wine 0.273 6: 286.0, 5: 325.0, 7: 86.0, 4: 16.0, 8: 7.0, 3: 2.0

132 red_wine 0.364 8: 15.0, 5: 511.0, 6: 484.0, 7: 156.0, 4: 48.0, 3: 10.0

133 red_wine 0.455 6: 516.0, 7: 164.0, 5: 558.0, 4: 53.0, 3: 10.0, 8: 16.0

134 red_wine 0.545 6: 526.0, 5: 566.0, 4: 53.0, 7: 165.0, 8: 17.0, 3: 10.0

135 red_wine 0.636 6: 529.0, 5: 571.0, 7: 165.0, 4: 53.0, 8: 17.0, 3: 10.0

136 red_wine 0.727 5: 574.0, 7: 165.0, 6: 531.0, 4: 53.0, 8: 17.0, 3: 10.0

137 red_wine 0.818 5: 575.0, 6: 531.0, 7: 165.0, 3: 10.0, 8: 17.0, 4: 53.0

138 red_wine 0.909 6: 531.0, 7: 165.0, 5: 575.0, 4: 53.0, 8: 17.0, 3: 10.0

139 red_wine 1.000 5: 577.0, 7: 167.0, 6: 535.0, 3: 10.0, 4: 53.0, 8: 17.0

140 white_wine 0.091 6: 35.0

141 white_wine 0.182 6: 233.0, 5: 33.0, 7: 3.0

142 white_wine 0.273 6: 830.0, 5: 411.0, 7: 200.0, 4: 24.0, 8: 26.0, 3: 4.0, 9: 0.0

143 white_wine 0.364 8: 112.0, 7: 570.0, 6: 1496.0, 5: 973.0, 4: 138.0, 3: 18.0, 9: 4.0

144 white_wine 0.455 6: 1722.0, 8: 130.0, 5: 1123.0, 7: 663.0, 4: 149.0, 3: 20.0, 9: 5.0

145 white_wine 0.545 8: 130.0, 5: 1152.0, 7: 670.0, 6: 1748.0, 4: 150.0, 3: 20.0, 9: 5.0

146 white_wine 0.636 5: 1158.0, 6: 1762.0, 8: 131.0, 7: 674.0, 4: 151.0, 9: 5.0, 3: 20.0

147 white_wine 0.727 6: 1766.0, 5: 1163.0, 7: 678.0, 8: 131.0, 9: 5.0, 4: 152.0, 3: 20.0

148 white_wine 0.818 7: 680.0, 5: 1163.0, 6: 1768.0, 4: 153.0, 8: 131.0, 3: 20.0, 9: 5.0

149 white_wine 0.909 6: 1769.0, 7: 680.0, 5: 1164.0, 8: 131.0, 4: 153.0, 3: 20.0, 9: 5.0

150 white_wine 1.000 7: 689.0, 6: 1788.0, 5: 1175.0, 8: 131.0, 4: 153.0, 3: 20.0, 9: 5.0

151 wine_merged 0.083 6: 4.0, 5: 0.0

152 wine_merged 0.167 6: 51.0, 5: 16.0

153 wine_merged 0.250 6: 310.0, 5: 130.0, 7: 6.0

154 wine_merged 0.333 6: 1122.0, 5: 734.0, 7: 281.0, 8: 32.0, 4: 38.0, 3: 7.0, 9: 0.0

155 wine_merged 0.417 6: 1979.0, 5: 1477.0, 3: 28.0, 7: 730.0, 4: 185.0, 8: 127.0, 9: 4.0

Continued on next page
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156 wine_merged 0.500 5: 1680.0, 6: 2239.0, 4: 202.0, 7: 825.0, 8: 145.0, 3: 30.0, 9: 5.0

157 wine_merged 0.583 6: 2276.0, 5: 1717.0, 7: 834.0, 8: 147.0, 4: 202.0, 9: 5.0, 3: 30.0

158 wine_merged 0.667 7: 838.0, 6: 2291.0, 5: 1728.0, 8: 148.0, 3: 30.0, 4: 204.0, 9: 5.0

159 wine_merged 0.750 5: 1736.0, 8: 148.0, 7: 843.0, 6: 2297.0, 4: 205.0, 9: 5.0, 3: 30.0

160 wine_merged 0.833 7: 844.0, 5: 1737.0, 6: 2299.0, 8: 148.0, 4: 206.0, 3: 30.0, 9: 5.0

161 wine_merged 0.917 5: 1738.0, 6: 2300.0, 7: 844.0, 8: 148.0, 4: 206.0, 3: 30.0, 9: 5.0

162 wine_merged 1.000 6: 2323.0, 5: 1752.0, 7: 856.0, 4: 206.0, 8: 148.0, 3: 30.0, 9: 5.0

2.4.6. Results comparison for standard and concept dependent granulation

Graph showing the difference in the size of granular reflections of training systems

calculated by concept dependent and standard techniques is shown in figure 2.1. The y-axis

labeled percent_diff denotes the size of the standard granular system relative to the

concept dependent granular system. This can be written as an expression:

percent_diff =
cd_size_for_radius− standard_size_for_radius

cd_size_for_radius
(2.8)

That is, a value of 0.5 on the y-axis means that the set after standard granulation for a given

radius is 50% of the size of the set after concept dependent granulation for the same

radius. A value of 0 means there is no difference in size, and value < 0 means that the set

after standard granulation contains more objects than that after concept dependent

granulation. Standard granulation, as proven by the experiments, generally results in more

approximated data sets.

From observing the above graph, we can draw several conclusions. A high value on the

y-axis means that the dataset is differentiated between decision classes, which does not

allow standard granulation to "merge" similar objects between classes. Such a situation is

particularly evident for the sets red wine, white wine and wine merged and, to a lesser

extent, for the sets australian dummy, adult and australian.

Comparison of the class balance of the two presented granulation methods for radius 1 and

the original datasets can be found in the table 2.24.
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Figure 2.1: Reflection dataset sizes comparison for each granulation radius.
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Comparison of granulation for radii close to or equal to 0.25, 0.5, 0.75, 1.0 for concept

dependent and standard granulation is shown in the table 2.25.

Table 2.25: Comparison of class balance between concept dependent granulation
radius and standard granulation for chosen radiuses.

dataset radius cdgran_class_balance standard_class_balance

iris 0.25 {1: 6, 2: 9, 3: 10} {3: 8, 2: 6, 1: 5}

iris 0.50 {1: 17, 2: 25, 3: 28} {3: 27, 1: 18, 2: 21}

iris 0.75 {1: 39, 2: 46, 3: 47} {3: 47, 1: 38, 2: 46}

iris 1.00 {1: 48, 2: 50, 3: 49} {1: 48, 3: 49, 2: 50}

australian 0.29 {0: 5, 1: 4} {0: 3, 1: 2}

australian 0.50 {0: 39, 1: 41} {0: 33, 1: 28}

australian 0.79 {0: 363, 1: 303} {0: 363, 1: 301}

australian 1.00 {0: 383, 1: 307} {0: 383, 1: 307}

australian_dummy 0.26 {0: 1, 1: 1} {0: 1}

australian_dummy 0.50 {0: 1, 1: 1} {0: 1}

australian_dummy 0.76 {0: 29, 1: 30} {0: 25, 1: 16}

australian_dummy 1.00 {0: 382, 1: 307} {1: 307, 0: 382}

heart 0.23 {0: 3, 1: 2} {1: 3, 0: 1}

heart 0.54 {0: 48, 1: 41} {0: 35, 1: 37}

heart 0.77 {0: 136, 1: 153} {0: 135, 1: 154}

heart 1.00 {0: 138, 1: 164} {1: 164, 0: 138}

pima 0.25 {0: 93, 1: 83} {0: 108, 1: 18}

pima 0.50 {0: 427, 1: 236} {0: 417, 1: 219}

pima 0.75 {0: 500, 1: 268} {1: 268, 0: 500}

pima 1.00 {0: 500, 1: 268} {0: 500, 1: 268}

breast 0.27 {’B’: 357, ’M’: 212} {’B’: 357, ’M’: 212}

breast 0.50 {’B’: 357, ’M’: 212} {’M’: 212, ’B’: 357}

breast 0.73 {’B’: 357, ’M’: 212} {’M’: 212, ’B’: 357}

breast 1.00 {’B’: 357, ’M’: 212} {’M’: 212, ’B’: 357}

mushroom 0.27 {’e’: 1, ’p’: 2} {’e’: 2}

mushroom 0.50 {’e’: 9, ’p’: 8} {’p’: 4, ’e’: 11}

mushroom 0.77 {’e’: 26, ’p’: 16} {’p’: 17, ’e’: 25}

mushroom 1.00 {’e’: 3488, ’p’: 2156} {’e’: 3488, ’p’: 2156}

red_wine 0.27 {3: 10, 4: 49, 5: 362, 6: 363, 7: 137, 8: 17} {6: 286, 5: 325, 7: 86, 4: 16, 8: 7, 3: 2}

red_wine 0.55 {3: 10, 4: 53, 5: 567, 6: 527, 7: 165, 8: 17} {6: 526, 5: 566, 4: 53, 7: 165, 8: 17, 3: 10}

red_wine 0.73 {3: 10, 4: 53, 5: 574, 6: 531, 7: 165, 8: 17} {5: 574, 7: 165, 6: 531, 4: 53, 8: 17, 3: 10}

red_wine 1.00 {3: 10, 4: 53, 5: 577, 6: 535, 7: 167, 8: 17} {5: 577, 7: 167, 6: 535, 3: 10, 4: 53, 8: 17}

white_wine 0.27 {3: 20, 4: 139, 5: 672, 6: 897, 7: 426, 8: 114, 9: 5} {6: 830, 5: 411, 7: 200, 4: 24, 8: 26, 3: 4, 9: 0}

white_wine 0.55 {3: 20, 4: 150, 5: 1156, 6: 1756, 7: 672, 8: 130, 9: 5} {8: 130, 5: 1152, 7: 670, 6: 1748, 4: 150, 3: 20, 9: 5}

white_wine 0.73 {3: 20, 4: 152, 5: 1163, 6: 1767, 7: 679, 8: 131, 9: 5} {6: 1766, 5: 1163, 7: 678, 8: 131, 9: 5, 4: 152, 3: 20}

white_wine 1.00 {3: 20, 4: 153, 5: 1175, 6: 1788, 7: 689, 8: 131, 9: 5} {7: 689, 6: 1788, 5: 1175, 8: 131, 4: 153, 3: 20, 9: 5}

wine_merged 0.25 {3: 23, 4: 109, 5: 290, 6: 318, 7: 203, 8: 73, 9: 5} {6: 310, 5: 130, 7: 6}

wine_merged 0.50 {3: 30, 4: 203, 5: 1693, 6: 2257, 7: 830, 8: 147, 9: 5} {5: 1680, 6: 2239, 4: 202, 7: 825, 8: 145, 3: 30, 9: 5}

wine_merged 0.75 {3: 30, 4: 205, 5: 1736, 6: 2298, 7: 843, 8: 148, 9: 5} {5: 1736, 8: 148, 7: 843, 6: 2297, 4: 205, 9: 5, 3: 30}

wine_merged 1.00 {3: 30, 4: 206, 5: 1752, 6: 2323, 7: 856, 8: 148, 9: 5} {6: 2323, 5: 1752, 7: 856, 4: 206, 8: 148, 3: 30, 9: 5}

adult 0.29 {’<=50K’: 12, ’>50K’: 10} {’<=50K’: 12}

adult 0.50 {’<=50K’: 177, ’>50K’: 112} {’<=50K’: 192, ’>50K’: 5}

adult 0.79 {’<=50K’: 7677, ’>50K’: 2947} {’<=50K’: 7700, ’>50K’: 1912}

adult 1.00 {’<=50K’: 33973, ’>50K’: 11202} {’<=50K’: 33970, ’>50K’: 11200}

The largest changes in balance occur for low-value radii, but for datasets with low

heterogeneity, that is, for which granulation strongly reduces the original size. For standard

granulation at low granulation radii, we may also notice a lack of observations for classes

that originally existed in the dataset. In such cases, we cannot reliably compare the balance

for the two techniques. In the table, we can highlight several examples where the balance
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changes quite significantly when comparing the same radius for both granulation methods.

Selected examples are presented in pie charts below.

Figure 2.2: Class balance comparison between concept dependent and standard
granulation. Adult dataset, radius 0.5.

Figure 2.3: Class balance comparison between concept dependent and standard
granulation. Adult dataset, radius 0.79.

In each of the above examples, we can see a change in the distribution of classes for the

indicated radii. Most of the selected observations do not change the original distribution to

a significant degree, but the case for the adult (radius 0.5), pima (radius 0.25), mushroom

(radius 0.5) datasets differ in balance between the indicated granulation methods quite

significantly. On top of that the standard granulation resulted in large or even extreme
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Figure 2.4: Class balance comparison between concept dependent and standard
granulation. Pima dataset, radius 0.25.

Figure 2.5: Class balance comparison between concept dependent and standard
granulation. Heart dataset, radius 0.54.

imbalanced collections, which can have a significant impact on the classification results,

which are presented in the next section.
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Figure 2.6: Class balance comparison between concept dependent and standard
granulation. Mushroom dataset, radius 0.5.

Figure 2.7: Class balance comparison between concept dependent and standard
granulation. Australian dataset, radius 0.5.

2.4.7. Classification results

Methodology

The first phase of the experiments in this section consisted of performing classification

with the selected algorithms on all the previously described datasets using the permutation

test, here tenfold.

Eight popular algorithms were selected to perform the classification:
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Figure 2.8: Class balance comparison between concept dependent and standard
granulation. Australian dummy dataset, radius 0.76.

Figure 2.9: Class balance comparison between concept dependent and standard
granulation. Red wine dataset, radius 0.27.

— K-nearest neighbor classifier (KNN)

— Gradient Boosting Classifier (XGBoost)

— Decision tree

— Logistic Regression

— Naive Bayes Classifier

— Support Vector Machines (SVM)

— Random Forest
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— Multi Layer Perceptron (MLP)

The entire solution was implemented using the Python language and the popular machine

learning library sklearn (urlhttps://scikit-learn.org/), which includes, among other things, an

implementation of the aforementioned classifiers.

Diagram showing the flow of the entire experiment.

Figure 2.10: Classification nil-case experiment pipeline.

Pseudocode for the presented pipeline.

Algorithm 1 Nil case classification pipeline.
dataset← [...]
classifiers← [...]
results← []

for all ds ∈ datasets do
for all n ∈ {1, . . . , 10} do

trn, tst← splitdata(ds)
for all classifier ∈ classifiers do

classifier.fit(trn)
results← results+ classifier.predict(tst)

Commonly used metrics shown below were used as measures of classification.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.9)

Precision =
TP

TP + FP
(2.10)

59



Recall = Sensitivity =
TP

TP + FN
(2.11)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(2.12)

Specificity =
TN

FP + TN
(2.13)

Balanced accuracy =
Sensitivity + Specificity

2
(2.14)

Balanced accuracy was used as the main measure when comparing results for original and

granulated datasets.

Nil-case

A total of 11 datasets, 8 classifiers and 10 permutations of the random division of the data

were selected giving a total of 880 classification results. This table is too large to be

presented here in full, so the data was grouped and averaged for each dataset and classifier.

Table 2.26: Classification results for nil case (original data) for all selected datasets.

dataset classifier acc balanced acc precision recall f1

ad
ul
t

decision_tree 0.81 0.75 0.74 0.75 0.74

knn 0.77 0.62 0.68 0.62 0.63

logistic_regression 0.79 0.63 0.73 0.63 0.64

mlp 0.75 0.50 0.62 0.50 0.43

naive_bayes 0.79 0.63 0.73 0.63 0.64

random_forest 0.84 0.72 0.83 0.72 0.75

svm 0.75 0.50 0.68 0.50 0.43

xgboost 0.86 0.79 0.81 0.79 0.80

au
st
ra
lia

n

decision_tree 0.82 0.81 0.81 0.81 0.81

knn 0.68 0.67 0.68 0.67 0.67

logistic_regression 0.86 0.86 0.86 0.86 0.86

mlp 0.66 0.65 0.67 0.65 0.64

naive_bayes 0.79 0.78 0.81 0.78 0.78

random_forest 0.86 0.86 0.86 0.86 0.86

svm 0.56 0.50 0.54 0.50 0.38

xgboost 0.85 0.85 0.85 0.85 0.85

Continued on next page
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dataset classifier acc balanced acc precision recall f1

au
st
ra
lia

n_
du

m
m
y

decision_tree 0.81 0.81 0.81 0.81 0.81

knn 0.66 0.65 0.66 0.65 0.65

logistic_regression 0.86 0.86 0.86 0.86 0.86

mlp 0.69 0.68 0.68 0.68 0.68

naive_bayes 0.81 0.81 0.82 0.81 0.81

random_forest 0.87 0.86 0.87 0.86 0.86

svm 0.54 0.52 0.52 0.52 0.45

xgboost 0.86 0.86 0.86 0.86 0.86

br
ea

st

decision_tree 0.93 0.92 0.92 0.92 0.92

knn 0.93 0.92 0.93 0.92 0.93

logistic_regression 0.95 0.95 0.95 0.95 0.95

mlp 0.61 0.58 0.45 0.58 0.46

naive_bayes 0.94 0.93 0.94 0.93 0.93

random_forest 0.95 0.95 0.96 0.95 0.95

svm 0.63 0.50 0.32 0.50 0.39

xgboost 0.96 0.95 0.96 0.95 0.95

he
ar

t

decision_tree 0.75 0.74 0.75 0.74 0.74

knn 0.64 0.63 0.64 0.63 0.63

logistic_regression 0.83 0.83 0.84 0.83 0.83

mlp 0.65 0.64 0.68 0.64 0.62

naive_bayes 0.82 0.81 0.82 0.81 0.81

random_forest 0.83 0.83 0.84 0.83 0.83

svm 0.54 0.50 0.45 0.50 0.36

xgboost 0.78 0.78 0.78 0.78 0.78

iri
s

decision_tree 0.96 0.96 0.96 0.96 0.96

knn 0.96 0.96 0.96 0.96 0.96

logistic_regression 0.97 0.97 0.97 0.97 0.97

mlp 0.97 0.97 0.97 0.97 0.97

naive_bayes 0.95 0.96 0.96 0.96 0.95

random_forest 0.96 0.96 0.96 0.96 0.96

svm 0.97 0.97 0.97 0.97 0.97

xgboost 0.95 0.96 0.95 0.96 0.95

Continued on next page
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dataset classifier acc balanced acc precision recall f1

m
us

hr
oo

m
_n

um

decision_tree 1.00 1.00 1.00 1.00 1.00

knn 1.00 1.00 1.00 1.00 1.00

logistic_regression 0.96 0.96 0.97 0.96 0.96

mlp 1.00 1.00 1.00 1.00 1.00

naive_bayes 0.71 0.62 0.80 0.62 0.61

random_forest 0.99 0.98 0.99 0.98 0.99

svm 1.00 1.00 1.00 1.00 1.00

xgboost 1.00 1.00 1.00 1.00 1.00

pi
m
a

decision_tree 0.69 0.66 0.66 0.66 0.66

knn 0.73 0.68 0.70 0.68 0.68

logistic_regression 0.76 0.72 0.75 0.72 0.73

mlp 0.68 0.64 0.66 0.64 0.63

naive_bayes 0.75 0.71 0.73 0.71 0.72

random_forest 0.76 0.71 0.75 0.71 0.72

svm 0.64 0.50 0.32 0.50 0.39

xgboost 0.72 0.69 0.70 0.69 0.69

re
d_

w
in
e

decision_tree 0.58 0.33 0.32 0.33 0.32

knn 0.50 0.23 0.25 0.23 0.23

logistic_regression 0.59 0.27 0.29 0.27 0.27

mlp 0.52 0.22 0.24 0.22 0.21

naive_bayes 0.54 0.31 0.30 0.31 0.30

random_forest 0.60 0.26 0.32 0.26 0.26

svm 0.55 0.25 0.29 0.25 0.25

xgboost 0.55 0.30 0.32 0.30 0.30

w
hi
te
_w

in
e

decision_tree 0.57 0.33 0.33 0.33 0.33

knn 0.47 0.23 0.30 0.23 0.24

logistic_regression 0.49 0.20 0.24 0.20 0.20

mlp 0.47 0.18 0.20 0.18 0.16

naive_bayes 0.44 0.29 0.29 0.29 0.26

random_forest 0.54 0.21 0.24 0.21 0.20

svm 0.55 0.24 0.47 0.24 0.26

xgboost 0.49 0.29 0.31 0.29 0.29

Continued on next page
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dataset classifier acc balanced acc precision recall f1

w
in
e_

m
er
ge

d

decision_tree 0.57 0.33 0.32 0.33 0.32

knn 0.47 0.21 0.27 0.21 0.22

logistic_regression 0.51 0.19 0.25 0.19 0.18

mlp 0.47 0.19 0.25 0.19 0.17

naive_bayes 0.42 0.26 0.24 0.26 0.22

random_forest 0.55 0.21 0.25 0.21 0.19

svm 0.54 0.24 0.48 0.24 0.26

xgboost 0.46 0.28 0.27 0.27 0.26

The poor quality of the classifiers for some of the granulated sets may be due to the strong

imbalance of the original sets, which were further reduced in size after granulation.

Decision class weighting techniques were not used for the classifiers used here.

Concept dependent granulation

Flow diagram for the granulation experiment case.

Figure 2.11: Classification of granuled datasets experiment pipeline.

As a result of classification experiments for each dataset, radius and classifier, but taking

into account the rules limiting the selection of a specific reflective set, 14214 unit

classification results were obtained for a tenfold permutation. The grouped and averaged

results resulted in 1424 records. Rejected results that did not pass the predefined rules

described below, gave a final set of results of 1419.
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At the experimental stage, the following rules were added, the occurrence of which omitted

a given reflection set from the classification process. This was especially true at low

granulation radii, where the number of objects after granulation can be very low.

Rule 1.

For the classifier knn, if the training set size is < k (default is 5)→ k = |train|.

Rule 2.

The classifier mlp, which in the experimental session uses the early stopping technique, the

activation of which causes the separation of additional 10% of the training set into a

validation set (the division is done according to the distribution of classes), with too few

(<6) observations in a single class, resulted in no objects being assigned to this set. Thus,

sets whose least numerous class had less than 6 objects were rejected for this classifier.

Table comparing the results of nil-case classification and classification of granular

collections using the concept dependent method.

Table 2.27: Classification results comparison between nil-case and concept
dependent granulation with radius equal to 1.

dataset classifier nil balanced acc. cd. gran. balanced acc. % point diff.

adult decision_tree 0.747 0.746 -0.001

adult knn 0.616 0.620 0.004

adult logistic_regression 0.627 0.616 -0.011

adult mlp 0.502 0.502 0.000

adult naive_bayes 0.627 0.625 -0.002

adult random_forest 0.717 0.714 -0.003

adult svm 0.502 0.502 0.000

adult xgboost 0.790 0.786 -0.004

australian decision_tree 0.813 0.820 0.007

australian knn 0.667 0.674 0.007

australian logistic_regression 0.859 0.856 -0.003

australian mlp 0.654 0.510 -0.144

australian naive_bayes 0.777 0.780 0.003

australian random_forest 0.857 0.862 0.005

australian svm 0.502 0.499 -0.003

australian xgboost 0.850 0.857 0.007

Continued on next page
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dataset classifier nil balanced acc. cd. gran. balanced acc. % point diff.

australian_dummy decision_tree 0.808 0.804 -0.004

australian_dummy knn 0.651 0.660 0.009

australian_dummy logistic_regression 0.861 0.857 -0.004

australian_dummy mlp 0.679 0.506 -0.173

australian_dummy naive_bayes 0.805 0.798 -0.007

australian_dummy random_forest 0.860 0.865 0.005

australian_dummy svm 0.521 0.515 -0.006

australian_dummy xgboost 0.861 0.860 -0.001

breast decision_tree 0.921 0.910 -0.011

breast knn 0.922 0.917 -0.005

breast logistic_regression 0.948 0.946 -0.002

breast mlp 0.578 0.500 -0.078

breast naive_bayes 0.927 0.927 0.000

breast random_forest 0.948 0.938 -0.010

breast svm 0.500 0.500 0.000

breast xgboost 0.953 0.945 -0.008

heart decision_tree 0.744 0.753 0.009

heart knn 0.634 0.649 0.015

heart logistic_regression 0.828 0.845 0.017

heart mlp 0.638 0.500 -0.138

heart naive_bayes 0.812 0.831 0.019

heart random_forest 0.831 0.845 0.014

heart svm 0.504 0.508 0.004

heart xgboost 0.779 0.791 0.012

iris decision_tree 0.957 0.947 -0.010

iris knn 0.959 0.962 0.003

iris logistic_regression 0.968 0.958 -0.010

iris mlp 0.969 0.918 -0.051

iris naive_bayes 0.955 0.944 -0.011

iris random_forest 0.957 0.949 -0.008

iris svm 0.969 0.973 0.004

iris xgboost 0.955 0.964 0.009

Continued on next page
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dataset classifier nil balanced acc. cd. gran. balanced acc. % point diff.

mushroom_num decision_tree 1.000 1.000 0.000

mushroom_num knn 0.999 1.000 0.001

mushroom_num logistic_regression 0.960 0.963 0.003

mushroom_num mlp 0.999 0.998 -0.001

mushroom_num naive_bayes 0.625 0.618 -0.007

mushroom_num random_forest 0.983 0.981 -0.002

mushroom_num svm 1.000 1.000 0.000

mushroom_num xgboost 1.000 1.000 0.000

pima decision_tree 0.663 0.665 0.002

pima knn 0.680 0.669 -0.011

pima logistic_regression 0.718 0.712 -0.006

pima mlp 0.636 0.500 -0.136

pima naive_bayes 0.711 0.711 0.000

pima random_forest 0.712 0.703 -0.009

pima svm 0.500 0.500 0.000

pima xgboost 0.688 0.694 0.006

red_wine decision_tree 0.328 0.341 0.013

red_wine knn 0.230 0.228 -0.002

red_wine logistic_regression 0.271 0.267 -0.004

red_wine mlp 0.221 0.167 -0.054

red_wine naive_bayes 0.311 0.326 0.015

red_wine random_forest 0.260 0.263 0.003

red_wine svm 0.248 0.256 0.008

red_wine xgboost 0.303 0.351 0.048

white_wine decision_tree 0.331 0.361 0.030

white_wine knn 0.229 0.210 -0.019

white_wine logistic_regression 0.200 0.192 -0.008

white_wine naive_bayes 0.287 0.299 0.012

white_wine random_forest 0.212 0.211 -0.001

white_wine svm 0.243 0.230 -0.013

white_wine xgboost 0.286 0.311 0.025

wine_merged decision_tree 0.333 0.346 0.013

Continued on next page
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Table 2.28: Mean classification change for concept dependent granulation
classification vs. nil-case.

classifier perc. point diff. mean

decision_tree 0.00436
knn -0.00027
logistic_regression -0.00218
mlp -0.08611
naive_bayes 0.00536
random_forest -0.00073
svm -0.00218
xgboost 0.01000

dataset classifier nil balanced acc. cd. gran. balanced acc. % point diff.

wine_merged knn 0.214 0.209 -0.005

wine_merged logistic_regression 0.191 0.195 0.004

wine_merged naive_bayes 0.264 0.301 0.037

wine_merged random_forest 0.208 0.206 -0.002

wine_merged svm 0.244 0.226 -0.018

wine_merged xgboost 0.275 0.291 0.016

The results for the compared cases do not differ significantly except in a few cases for the

mlp and svm classifiers. However, it should be noted that the measures for these

classifiers for nil-case are also low and often at the level of random results given the

number of classes in a given set. 43 balanced accuracy values were lower than for nil-case,

9 did not change, and 34 were higher.

When we compare the average change for the classifier, we can see that most of the

changes are not statistically significant. The only significant difference is an 8 percentage

point decrease in the accuracy of the mlp model, which tends to bring the final result closer

to a result equal to the random selection of the label.

Due to the different number of attributes in the test sets, it is not always possible to

compare results for the same radii, but it was assumed that a comparison of results for a

radius as close to 0.5 as possible (that is, granulation for objects similar in about half of

their attributes) would be used to compare results for the two granulation methods

presented - standard and concept dependent. However, it will not be possible to compare

this to the homogeneous granulation presented in 3.11, since there the granulation radius is

not chosen a priori, but for each object separately.
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For the calculation of the results shown below, it was assumed that the data was selected

for radii equal to 0.5, and if a given set did not have an even number of attributes then the

value of the metrics was taken for the two radii closest to 0.5 and averaged.

Table 2.29: Classification results comparison between nil-case and concept
dependent granulation with radius equal to 0.5.

dataset classifier nil balanced acc cdgran balanced acc perc. point diff.

adult decision_tree 0.747 0.681 -0.066

adult knn 0.616 0.503 -0.113

adult logistic_regression 0.627 0.609 -0.018

adult mlp 0.502 0.520 0.018

adult naive_bayes 0.627 0.577 -0.050

adult random_forest 0.717 0.751 0.034

adult svm 0.502 0.500 -0.002

adult xgboost 0.790 0.727 -0.063

australian decision_tree 0.813 0.667 -0.146

australian knn 0.667 0.568 -0.099

australian logistic_regression 0.859 0.771 -0.088

australian mlp 0.654 0.500 -0.154

australian naive_bayes 0.777 0.720 -0.057

australian random_forest 0.857 0.779 -0.078

australian svm 0.502 0.513 0.011

australian xgboost 0.850 0.672 -0.178

australian_dummy decision_tree 0.808 0.557 -0.251

australian_dummy knn 0.651 0.500 -0.151

australian_dummy logistic_regression 0.861 0.483 -0.378

australian_dummy naive_bayes 0.805 0.483 -0.322

australian_dummy random_forest 0.860 0.748 -0.112

australian_dummy svm 0.521 0.530 0.009

australian_dummy xgboost 0.861 0.745 -0.116

breast decision_tree 0.921 0.911 -0.010

breast knn 0.922 0.917 -0.005

breast logistic_regression 0.948 0.945 -0.003

Continued on next page
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dataset classifier nil balanced acc cdgran balanced acc perc. point diff.

breast mlp 0.578 0.502 -0.076

breast naive_bayes 0.927 0.927 0.000

breast random_forest 0.948 0.939 -0.009

breast svm 0.500 0.500 0.000

breast xgboost 0.953 0.941 -0.012

heart decision_tree 0.744 0.680 -0.064

heart knn 0.634 0.621 -0.013

heart logistic_regression 0.828 0.752 -0.076

heart mlp 0.638 0.498 -0.140

heart naive_bayes 0.812 0.756 -0.056

heart random_forest 0.831 0.768 -0.063

heart svm 0.504 0.502 -0.002

heart xgboost 0.779 0.689 -0.090

iris decision_tree 0.957 0.938 -0.019

iris knn 0.959 0.962 0.003

iris logistic_regression 0.968 0.964 -0.004

iris mlp 0.969 0.922 -0.047

iris naive_bayes 0.955 0.949 -0.006

iris random_forest 0.957 0.947 -0.010

iris svm 0.969 0.976 0.007

iris xgboost 0.955 0.940 -0.015

mushroom_num decision_tree 1.000 0.805 -0.195

mushroom_num knn 0.999 0.786 -0.213

mushroom_num logistic_regression 0.960 0.748 -0.212

mushroom_num mlp 0.999 0.601 -0.398

mushroom_num naive_bayes 0.625 0.589 -0.036

mushroom_num random_forest 0.983 0.828 -0.155

mushroom_num svm 1.000 0.762 -0.238

mushroom_num xgboost 1.000 0.805 -0.195

pima decision_tree 0.663 0.656 -0.007

pima knn 0.680 0.670 -0.010

pima logistic_regression 0.718 0.711 -0.007

Continued on next page
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dataset classifier nil balanced acc cdgran balanced acc perc. point diff.

pima mlp 0.636 0.500 -0.136

pima naive_bayes 0.711 0.707 -0.004

pima random_forest 0.712 0.697 -0.015

pima svm 0.500 0.500 0.000

pima xgboost 0.688 0.697 0.009

red_wine decision_tree 0.328 0.346 0.018

red_wine knn 0.230 0.227 -0.003

red_wine logistic_regression 0.271 0.267 -0.004

red_wine mlp 0.221 0.166 -0.055

red_wine naive_bayes 0.311 0.325 0.014

red_wine random_forest 0.260 0.261 0.001

red_wine svm 0.248 0.256 0.008

red_wine xgboost 0.303 0.342 0.039

white_wine decision_tree 0.331 0.356 0.025

white_wine knn 0.229 0.210 -0.019

white_wine logistic_regression 0.200 0.194 -0.006

white_wine naive_bayes 0.287 0.298 0.011

white_wine random_forest 0.212 0.209 -0.003

white_wine svm 0.243 0.229 -0.014

white_wine xgboost 0.286 0.323 0.037

wine_merged decision_tree 0.333 0.345 0.012

wine_merged knn 0.214 0.209 -0.005

wine_merged logistic_regression 0.191 0.195 0.004

wine_merged naive_bayes 0.264 0.301 0.037

wine_merged random_forest 0.208 0.205 -0.003

wine_merged svm 0.244 0.225 -0.019

wine_merged xgboost 0.275 0.261 -0.014

The results of classifying granulated data with the concept dependent method yielded a

reduction in balanced accuracy values. If we compare this with the results for standard

granulation, the results are worse. A special case of deterioration in results is the australian

dummy set (this is the australian set that was encoded using the one hot method), for

which the results dropped for some classifiers by more than 30 percentage points.
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An explanation can be found in the table 2.30, which shows the percentage of dataset

reduction after concept dependent granulation for a radius of 0.5, and notes that for the

australian dummy set, the average dataset size after granulation is 2, so one object per

decision class. In practice, using any complex classifier on such a number of observations

does not make much sense, but it shows that even for such a drastic reduction of the

dataaset size with the presented granulation methods, classifiers such as random forest

and xgboost can achieve about 75% classification efficiency.

Table 2.30: Granuled dataset sizes for concept dependent granulation for radius 0.5.

dataset radius % of all objects objects_total_mean

adult 0.5 0.639 289.100
australian 0.5 11.551 79.700
australian_dummy 0.5 0.290 2.000
breast 0.5 100.000 569.000
iris 0.5 46.867 70.300
mushroom 0.5 0.292 16.500
pima 0.5 86.380 663.400
wine_merged 0.5 79.495 5164.800
heart 0.5 21.502 65.150
mushroom 0.5 0.293 16.533
red_wine 0.5 83.271 1331.500
white_wine 0.5 78.925 3865.750

The column % of all objects represents the % of objects that are in the granular set for a

given dataset and radius of 0.5, and the objects_total_mean column is the average number

of objects that were there after a 10-fold granulation.

If we average the results for each classifier we get the results presented in table 2.31.

Table 2.31: Mean percent point balanced accuracy bias for concept dependent
granuled data for radius 0.5 vs nil-case classification.

classifier perc point diff
mean

decision_tree -0.06391
knn -0.05709
logistic_regression -0.07200
mlp -0.12350
naive_bayes -0.04264
random_forest -0.03755
svm -0.02182
xgboost -0.05436
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We see that the results for concept dependent granulation for radius 1.0 and 0.5 are lower

than for nil-case classification. The average difference for radius 1.0 is negligible, but given

that concept-dependent granulation for this radius in most of the tested datasets did not

reduce their size significantly (see 2.20) this is not unusual. The situation is different for

radius 0.5, where the decrease in the size of granular sets is not uncommon, and the

decrease in the classification measure is is disproportionately smaller.

Standard granulation

Algorithm 2 Standard granulation classification pipeline.
dataset← [...]
classifiers← [...]
results← []

for all ds ∈ datasets do
for all n ∈ {1, . . . , 10} do

trn, tst← splitdata(ds)
for all classifier ∈ classifiers do

classifier.fit(trn)
results← results+ classifier.predict(tst)

Taking into account the fact that the standard granulation process can lead, for low

granulation radii, to a situation in which no new objects are created for the originally

existing class in the reflection set, part of these sets could not be used to perform

meaningful classification. For this reason, in addition to the rules presented in 2.4.7 and

2.4.7, one more rule was added.

Rule 3.

Reflective sets (i.e., after granulation) that contain less than two different decision classes

are ignored.

Taking into account the above limitations, a total of 10177 individual results were collected

in the classification process of sets granulated using the standard method. The granulation

process was carried out 10 times for each set, so in order to average the results, the partial

results should be grouped. After grouping, a set of 1089 results was obtained.

Due to the nondeterminism of the granulation process, part of the sets with the same radius

were rejected by the above-mentioned rules, and part were subjected to classification. As a

result, some of the results after grouping do not consist of 10 permutations of classification

for a given radius, and these results were discarded from the final summary. The final

grouped and filtered set has 973 classification results. This is too many to present in full

here, so below is a summary of these results and a visualization of a selection of them.
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Comparison of classification results by balanced accuracy measure for nil-case

classification and standard granulation for radius equal to 1. It should be noted here that

nominally after grouping the data there should be 88 results (11 sets * 8 classifiers), but two

of them were rejected by rule 3 under 2.4.7 and are not present in the table below.

Table 2.32: Classification results comparison between nil-case and standard
granulation with radius equal to 1.

dataset classifier nil balanced acc. std. gran. balanced acc. % point diff.

adult decision_tree 0.747 0.748 0.001

adult knn 0.616 0.622 0.006

adult logistic_regression 0.627 0.622 -0.005

adult mlp 0.502 0.501 -0.001

adult naive_bayes 0.627 0.628 0.001

adult random_forest 0.717 0.719 0.002

adult svm 0.502 0.502 0.000

adult xgboost 0.790 0.789 -0.001

australian decision_tree 0.813 0.803 -0.010

australian knn 0.667 0.656 -0.011

australian logistic_regression 0.859 0.844 -0.015

australian mlp 0.654 0.502 -0.152

australian naive_bayes 0.777 0.752 -0.025

australian random_forest 0.857 0.848 -0.009

australian svm 0.502 0.504 0.002

australian xgboost 0.850 0.850 0.000

australian_dummy decision_tree 0.808 0.807 -0.001

australian_dummy knn 0.651 0.663 0.012

australian_dummy logistic_regression 0.861 0.858 -0.003

australian_dummy mlp 0.679 0.517 -0.162

australian_dummy naive_bayes 0.805 0.804 -0.001

australian_dummy random_forest 0.860 0.857 -0.003

australian_dummy svm 0.521 0.516 -0.005

australian_dummy xgboost 0.861 0.838 -0.023

breast decision_tree 0.921 0.919 -0.002

Continued on next page
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dataset classifier nil balanced acc. std. gran. balanced acc. % point diff.

breast knn 0.922 0.918 -0.004

breast logistic_regression 0.948 0.936 -0.012

breast mlp 0.578 0.502 -0.076

breast naive_bayes 0.927 0.923 -0.004

breast random_forest 0.948 0.945 -0.003

breast svm 0.500 0.500 0.000

breast xgboost 0.953 0.949 -0.004

heart decision_tree 0.744 0.735 -0.009

heart knn 0.634 0.620 -0.014

heart logistic_regression 0.828 0.815 -0.013

heart mlp 0.638 0.500 -0.138

heart naive_bayes 0.812 0.810 -0.002

heart random_forest 0.831 0.821 -0.010

heart svm 0.504 0.504 0.000

heart xgboost 0.779 0.783 0.004

iris decision_tree 0.957 0.929 -0.028

iris knn 0.959 0.962 0.003

iris logistic_regression 0.968 0.956 -0.012

iris mlp 0.969 0.931 -0.038

iris naive_bayes 0.955 0.956 0.001

iris random_forest 0.957 0.947 -0.010

iris svm 0.969 0.960 -0.009

iris xgboost 0.955 0.940 -0.015

mushroom_num decision_tree 1.000 1.000 0.000

mushroom_num knn 0.999 0.999 0.000

mushroom_num logistic_regression 0.960 0.962 0.002

mushroom_num mlp 0.999 0.999 0.000

mushroom_num naive_bayes 0.625 0.622 -0.003

mushroom_num random_forest 0.983 0.981 -0.002

mushroom_num svm 1.000 1.000 0.000

mushroom_num xgboost 1.000 1.000 0.000

pima decision_tree 0.663 0.693 0.030

Continued on next page
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dataset classifier nil balanced acc. std. gran. balanced acc. % point diff.

pima knn 0.680 0.687 0.007

pima logistic_regression 0.718 0.718 0.000

pima mlp 0.636 0.500 -0.136

pima naive_bayes 0.711 0.717 0.006

pima random_forest 0.712 0.698 -0.014

pima svm 0.500 0.500 0.000

pima xgboost 0.688 0.702 0.014

red_wine decision_tree 0.328 0.345 0.017

red_wine knn 0.230 0.225 -0.005

red_wine logistic_regression 0.271 0.259 -0.012

red_wine mlp 0.221 0.167 -0.054

red_wine naive_bayes 0.311 0.321 0.010

red_wine random_forest 0.260 0.256 -0.004

red_wine svm 0.248 0.257 0.009

red_wine xgboost 0.303 0.344 0.041

white_wine decision_tree 0.331 0.357 0.026

white_wine knn 0.229 0.215 -0.014

white_wine logistic_regression 0.200 0.192 -0.008

white_wine naive_bayes 0.287 0.285 -0.002

white_wine random_forest 0.212 0.209 -0.003

white_wine svm 0.243 0.232 -0.011

white_wine xgboost 0.286 0.292 0.006

wine_merged decision_tree 0.333 0.344 0.011

wine_merged knn 0.214 0.204 -0.010

wine_merged logistic_regression 0.191 0.195 0.004

wine_merged naive_bayes 0.264 0.294 0.030

wine_merged random_forest 0.208 0.205 -0.003

wine_merged svm 0.244 0.225 -0.019

wine_merged xgboost 0.275 0.288 0.013

Analyzing the table, we can draw a clear conclusion - the classification of original and

granular data using the standard method for the radius of granulation 1 does not bring

significant changes in the measure of balanced accuracy, and in most cases it is lower for
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granular data, but this difference is within the range of statistical insignificance. The

exception is the results of the mlp classifier for the sets of australian, australian dummy,

breast, heart and pima where the results are already clearly worse. However, this fits in with

the earlier and later presented results for the mlp classifier, which are among the lowest in

the experiments conducted. This result is not surprising, as a comparison of the size of the

original and standard-granulated harvests presented in the table 2.22 shows that for radius

1 the australian, australian dummy, breast, mushroom and pima datasets did not change

their size after granulation. Slightly smaller yields for radius 1 arose for iris dataset (about

98% of the original size), red wine (about 84%), white wine (about 80%) and merged wine

(about 80%). Considering the results of just these last three collections, we can conclude

that standard granulation has effectively reduced the noise in these datasets, as the

classification results are almost identical, although globally very low.

The results for the 0.5 radius were calculated on the same basis as the results presented in

the previous subsection for the 0.5 radius of concept dependent granulation.

Table 2.33: Classification results comparison between nil-case and standard
granulation with radius equal to 0.5.

dataset classifier nil balanced acc. std. gran. balanced acc. % point diff.

adult decision_tree 0.747 0.574 -0.173

adult knn 0.616 0.500 -0.116

adult logistic_regression 0.627 0.509 -0.118

adult naive_bayes 0.627 0.527 -0.100

adult random_forest 0.717 0.520 -0.197

adult svm 0.502 0.500 -0.002

adult xgboost 0.790 0.576 -0.214

australian decision_tree 0.813 0.767 -0.046

australian knn 0.667 0.586 -0.081

australian logistic_regression 0.859 0.689 -0.170

australian mlp 0.654 0.501 -0.153

australian naive_bayes 0.777 0.694 -0.083

australian random_forest 0.857 0.816 -0.041

australian svm 0.502 0.509 0.007

australian xgboost 0.850 0.774 -0.076

Continued on next page
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dataset classifier nil balanced acc. std. gran. balanced acc. % point diff.

breast decision_tree 0.921 0.913 -0.008

breast knn 0.922 0.918 -0.004

breast logistic_regression 0.948 0.937 -0.011

breast mlp 0.578 0.502 -0.076

breast naive_bayes 0.927 0.923 -0.004

breast random_forest 0.948 0.945 -0.003

breast svm 0.500 0.500 0.000

breast xgboost 0.953 0.950 -0.003

heart decision_tree 0.744 0.705 -0.039

heart knn 0.634 0.627 -0.007

heart logistic_regression 0.828 0.744 -0.084

heart mlp 0.638 0.499 -0.139

heart naive_bayes 0.812 0.750 -0.062

heart random_forest 0.831 0.780 -0.051

heart svm 0.504 0.502 -0.002

heart xgboost 0.779 0.712 -0.067

iris decision_tree 0.957 0.918 -0.039

iris knn 0.959 0.938 -0.021

iris logistic_regression 0.968 0.947 -0.021

iris mlp 0.969 0.847 -0.122

iris naive_bayes 0.955 0.936 -0.019

iris random_forest 0.957 0.947 -0.010

iris svm 0.969 0.951 -0.018

iris xgboost 0.955 0.938 -0.017

mushroom_num decision_tree 1.000 0.771 -0.229

mushroom_num knn 0.999 0.641 -0.358

mushroom_num logistic_regression 0.960 0.791 -0.169

mushroom_num naive_bayes 0.625 0.698 0.073

mushroom_num random_forest 0.983 0.815 -0.168

mushroom_num svm 1.000 0.726 -0.274

mushroom_num xgboost 1.000 0.787 -0.213

pima decision_tree 0.663 0.654 -0.009

Continued on next page
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dataset classifier nil balanced acc. std. gran. balanced acc. % point diff.

pima knn 0.680 0.668 -0.012

pima logistic_regression 0.718 0.711 -0.007

pima mlp 0.636 0.501 -0.135

pima naive_bayes 0.711 0.702 -0.009

pima random_forest 0.712 0.696 -0.016

pima svm 0.500 0.500 0.000

pima xgboost 0.688 0.697 0.009

red_wine decision_tree 0.328 0.344 0.016

red_wine knn 0.230 0.224 -0.006

red_wine logistic_regression 0.271 0.257 -0.014

red_wine mlp 0.221 0.168 -0.053

red_wine naive_bayes 0.311 0.323 0.012

red_wine random_forest 0.260 0.256 -0.004

red_wine svm 0.248 0.255 0.007

red_wine xgboost 0.303 0.318 0.015

white_wine decision_tree 0.331 0.353 0.022

white_wine knn 0.229 0.214 -0.015

white_wine logistic_regression 0.200 0.194 -0.006

white_wine naive_bayes 0.287 0.286 -0.001

white_wine random_forest 0.212 0.207 -0.005

white_wine svm 0.243 0.231 -0.012

white_wine xgboost 0.286 0.284 -0.002

wine_merged decision_tree 0.333 0.339 0.006

wine_merged knn 0.214 0.203 -0.011

wine_merged logistic_regression 0.191 0.195 0.004

wine_merged naive_bayes 0.264 0.298 0.034

wine_merged random_forest 0.208 0.204 -0.004

wine_merged svm 0.244 0.224 -0.020

wine_merged xgboost 0.275 0.281 0.006

Classification results for data granulated at radius 0.5 are usually worse than those for

radius 1, but quite often on par. When we again take a closer look at the sizes of these sets

after granulation then we can draw further conclusions. It will be helpful to summarize the
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changes in balance accuracy for radii 1 and 0.5 and the change in size of the original

dataset vs. the nil-case classification results.

Table 2.34: Balanced accuracy change for radius 1 and 0.5 along with granular sets
sizes change.

dataset nil acc. % size r=1.0 acc diff. r=1.0 % size r=0.5 acc diff. r=0.5

adult 0.6609 99.8850 0.0004 0.4361 -0.1314
australian 0.7474 100.0000 -0.0275 8.8696 -0.0804
australian_dummy 0.7558 100.0000 -0.0233 — 0.1451
breast 0.8371 100.0000 -0.0131 100.0000 -0.0136
heart 0.7212 99.6700 -0.0228 16.8317 -0.0564
iris 0.9611 98.0000 -0.0135 44.5333 -0.0334
mushroom_num 0.9381 100.0177 -0.0004 0.2818 -0.1911
pima 0.6635 100.0000 -0.0116 82.7865 -0.0224
red_wine 0.2715 84.9906 0.0002 82.9831 -0.0034
white_wine 0.2554 80.8697 -0.0009 78.4718 -0.0027
wine_merged 0.2470 81.8839 0.0037 78.9118 0.0021

In addition to the obvious dataset column, the nil acc. column states for the balanced

accuracy for the nil case as a base for comparison to radius 1 and 0.5. The acc diff r = 1.0

column indicates the averaged difference in balanced accuracy compared to nil-case, the

%size r = 1.0 column indicates what % of the size of the original set is the set after

granulation for radius 1. The acc diff. r = 0.5 signifies the averaged difference in balanced

accuracy compared to nil-case, and column %size r = 0.5 indicates what % of the size of

the original set is the set after granulation for radius 0.5. The missing value for the 0.5

radius of the Australian dummy dataset is due to the fact that, due to its very large

approximation and the small size of the granulated training set, it was not possible to

perform classification with all the selected classifiers. The result was therefore discarded.

In the above table, we can see a correlation between the decrease in the balanced accuracy

metric and the decrease in the size of the granulated set, but it is not large. This is best

seen for the sets whose reduction in the number of objects for granulation with a radius of

0.5 is large, i.e. the adult set (reduction of 99.6 percent), australian (reduction of 91.1

percent), australian dummy (reduction of 99.85 percent), heart (reduction of 83.2 percent)

and mushroom (reduction of 99.7 percent), and the decrease in the classification measure

is not proportionally big to the decrease in the size of this set. This also confirms the

effectiveness of granulation in the process of preserving the information contained in the

original dataset allowing low diverse datasets to be well aproximated and used in Machine

Learning algorithms with final good results.
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2.5. Conclusions

Both of the granularity techniques presented, are effective methods for approximating

decision sets, although it is also necessary to properly understand the data in order to

effectively select the best classifier for a given dataset. The granularity and size of the final

granular set also gives us information about how diverse the set is. The greater the

reduction in the original size of the set, the less diverse it is, and vice versa. Proper

selection of the granularity radius can effectively help get rid of noise from the data,

keeping the quality of the classification at a comparable level.

It should also not be underestimated that granulation can contribute to changing the

original balance of classes in the set and may require additional set preparation through, for

example, oversampling or undersampling to improve the effectiveness of the Machine

Learning model built on the set.

Concept dependent granulation also undoubtedly has the advantage that it takes place

within the boundaries of the decision class and objects between classes are not "mixed"

between concepts by the majority voting mechanism, and no class will disappear from the

dataset.

Standard granularity, on the other hand, can be used on sets whose labels we would like

to assign in a way that results from the greatest possible similarity of objects between

each other, in cases where they may have originally been assigned arbitrarily or in a random

manner not based on observation.



Part II

In search of knowledge granulation techniques

with an adaptive mechanism for determining

the granulation radius



3. Homogeneous granulation

3.1. Method description

The concept of homogeneous granulation was first proposed in [34], and was used

in subsequent studies of its effect on data in the context of its use in the ensemble

model [4], in the epsilon variant of [35], and as part of the missing value absorption

model [5].

Homogeneous granulation is an approach based on concept dependent

granulation, see. 2.2.1, but with a significant difference where it comes to

granulation radius selection. In fact the granulation radius is selected in an

automatic way. The granulation radius, i.e. indiscernibility level, is extended until

formed granule consists only of objects within the same decision class. This

approach can be compared to clustering methods where similar objects are located

around their centroids - here it is done based on rough set theory, which means that

the object belongs to the set (granule) to a certain degree (radius). Taking this into

account, it is necessary to get rid of ambiguity in the preprocessing phase, that is,

to solve the problem of identical objects within different decision classes.

For the sake of formality, the steps of homogeneous granulation are described

below.

1. Input of the Decision-Making System (U - Collection of objects, A - non decision

attributes, d - decision),

2. Elimination of completely contradictory objects (identical attribute values with

different decision attribute value),

3. The granules are defined as,

ghomogeneous
ru = {v ∈ U : |gcdru| − |gru | = 0, for minimal ru fulfills the equation}
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where

gcdru = {v ∈ U :
|IND(u, v)|
|A|

≤ ru ∧ d(u) = d(v)}

and

gru = {v ∈ U :
|IND(u, v)|
|A|

≤ ru}

ru ∈ {
0

|A|
,
1

|A|
, ..., 1}

µ is an rough inclusion,

4. We create granular coverage using the chosen strategy:

- Selection of granules in a fixed order (hierarchical)

- random selection,

- selection by length,

- selection according to coverage rate,

- random selection depending on class size.

Granules that convey at least one new object go into coverage.

A training system is considered covered when it satisfies the following equation:

⋃
{gcdrgran(u) : gcdrgran(u) ∈ Ucover} = U (3.1)

where Ucover denotes the set of granular coverage.

We form new objects from the granules of cover - using a strategy of our choice,

such as Majority Voting.

The granular reflection of the original decision system D = (U,A, d) is the new

decision system (COV (U, µ, r), the set of objects formed from granules.

v ∈ gcdr (u) if and only if µ(v, u, r) and (d(u) = d(v)) (3.2)

for a given rough (weak) inclusion µ.

The effect of Majority Voting can be recorded as:.

{MV ({a(u) : u ∈ g}) : a ∈ A ∪ {d}} (3.3)
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3.2. Simple example of homogeneous granulation

In our example, we will use the data from Tab. 2.1.

This granulation works analogously to concept-dependent, except that the granules

are formed in the following way.

Step 1: forming granules.

Since the radius of granulation is not predetermined, we initialize its value as 4/4

(1.0) (we are looking for objects that are 100% similar to it) and then it will be

reduced as defined in the section 3.1. We first take the first object as the central

object, which in our case will be an object marked with blue in the table.

Table 3.1: Homogeneous granulation toy example - objects in granule for u1 and
radius of 4/4 (1.0).

sepal_length sepal_width petal_length petal_width iris class

1 5.1 3.5 1.4 0.2 1
2 4.9 3.0 1.4 0.2 1
3 4.7 3.2 1.3 0.2 1
4 4.6 3.1 1.5 0.2 1
5 5.0 3.6 1.4 0.2 1
6 7.0 3.2 4.7 1.4 2
7 6.4 3.2 4.5 1.5 2
8 6.9 3.1 4.9 1.5 2
9 5.5 2.3 4.0 1.3 2
10 6.5 2.8 4.6 1.5 2
11 6.3 3.3 6.0 2.5 3
12 5.8 2.7 5.1 1.9 3
13 7.1 3.0 5.9 2.1 3
14 6.3 2.9 5.6 1.8 3
15 6.5 3.0 5.8 2.2 3

Granule g(u1) = {u1}

There are no identical objects in this dataset, so we can decrease the granulation

radius in order to catch more objects in one granule.

Granulation radius is being reduced to 3/4 (0.75). In order to better demonstrate

the effect of selecting objects for granulation in this type of granulation, the entire

dataset will be presented with the objects that qualify for this granulation marked

with green background.
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Table 3.2: Homogeneous granulation toy example - objects in granule for u1 and
radius of 3/4 (0.75).

sepal_length sepal_width petal_length petal_width iris class

1 5.1 3.5 1.4 0.2 1
2 4.9 3.0 1.4 0.2 1
3 4.7 3.2 1.3 0.2 1
4 4.6 3.1 1.5 0.2 1
5 5.0 3.6 1.4 0.2 1
6 7.0 3.2 4.7 1.4 2
7 6.4 3.2 4.5 1.5 2
8 6.9 3.1 4.9 1.5 2
9 5.5 2.3 4.0 1.3 2
10 6.5 2.8 4.6 1.5 2
11 6.3 3.3 6.0 2.5 3
12 5.8 2.7 5.1 1.9 3
13 7.1 3.0 5.9 2.1 3
14 6.3 2.9 5.6 1.8 3
15 6.5 3.0 5.8 2.2 3

Granule g(u1) = {u1}

In the case of object u1, also for a radius of 3/4, there are no other objects

indiscernible in this degree.

Granulation radius is being reduced to 2/4 (0.5).

Table 3.3: Homogeneous granulation toy example - objects in granule for u1 and
radius of 2/4 (0.5).

sepal_length sepal_width petal_length petal_width iris class

1 5.1 3.5 1.4 0.2 1
2 4.9 3.0 1.4 0.2 1
3 4.7 3.2 1.3 0.2 1
4 4.6 3.1 1.5 0.2 1
5 5.0 3.6 1.4 0.2 1
6 7.0 3.2 4.7 1.4 2
7 6.4 3.2 4.5 1.5 2
8 6.9 3.1 4.9 1.5 2
9 5.5 2.3 4.0 1.3 2
10 6.5 2.8 4.6 1.5 2
11 6.3 3.3 6.0 2.5 3
12 5.8 2.7 5.1 1.9 3
13 7.1 3.0 5.9 2.1 3
14 6.3 2.9 5.6 1.8 3
15 6.5 3.0 5.8 2.2 3
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Granule g(u1) = {u1, u2, u5}

This granule is still homogeneous, so we will reduce the radius to 1/4 (0.25).

Table 3.4: Homogeneous granulation toy example - objects in granule for u1 and
radius of 1/4 (0.25).

sepal_length sepal_width petal_length petal_width iris class

1 5.1 3.5 1.4 0.2 1
2 4.9 3.0 1.4 0.2 1
3 4.7 3.2 1.3 0.2 1
4 4.6 3.1 1.5 0.2 1
5 5.0 3.6 1.4 0.2 1
6 7.0 3.2 4.7 1.4 2
7 6.4 3.2 4.5 1.5 2
8 6.9 3.1 4.9 1.5 2
9 5.5 2.3 4.0 1.3 2
10 6.5 2.8 4.6 1.5 2
11 6.3 3.3 6.0 2.5 3
12 5.8 2.7 5.1 1.9 3
13 7.1 3.0 5.9 2.1 3
14 6.3 2.9 5.6 1.8 3
15 6.5 3.0 5.8 2.2 3

Granule g(u1) = {u1, u2, u3, u4, u5}

Now our granule already contains all the objects for the decision class equal to 1,

so intuitively, according to the definition of homogeneous granulation, we can

assume that the algorithm should terminate its operation since only objects from

other decision classes remain. However, from a formal point of view, we continue

the algorithm until the granule contains an object that is not homogeneous in terms

of the decision class, and then we take the radius of granulation as that of the

previous iteration.

Granulation radius is being reduced to 0/4 (0.0).

Analyzing the example for concept dependent granulation, we know that radius 0 is

a special case and means that all objects are indiscernible in this degree, and this

means that all dataset objects will go into the granule. This in turn means that the

granule will be of the form:

Granule g(u1) = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15}
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Table 3.5: Homogeneous granulation toy example - objects in granule for u1 and
radius of 0/4 (0.0).

sepal_length sepal_width petal_length petal_width iris class

1 5.1 3.5 1.4 0.2 1
2 4.9 3.0 1.4 0.2 1
3 4.7 3.2 1.3 0.2 1
4 4.6 3.1 1.5 0.2 1
5 5.0 3.6 1.4 0.2 1
6 7.0 3.2 4.7 1.4 2
7 6.4 3.2 4.5 1.5 2
8 6.9 3.1 4.9 1.5 2
9 5.5 2.3 4.0 1.3 2
10 6.5 2.8 4.6 1.5 2
11 6.3 3.3 6.0 2.5 3
12 5.8 2.7 5.1 1.9 3
13 7.1 3.0 5.9 2.1 3
14 6.3 2.9 5.6 1.8 3
15 6.5 3.0 5.8 2.2 3

So it gets a non-uniform granule, and this means that the radius from the previous

step is our final radius of granulation for this central object u1.

Continuing the process of forming granules will yield the following set of granules.

g0.25(u1) = (u1, u2, u3, u4, u5)

g0.5(u2) = (u1, u2, u5)

g0.5(u3) = (u3)

g0.5(u4) = (u4)

g0.25(u5) = (u1, u2, u3, u4, u5)

g0.5(u6) = (u6)

g0.5(u7) = (u7)

g0.5(u8) = (u8)

g0.25(u9) = (u9)

g0.5(u10) = (u10)

g0.25(u11) = (u11, u14)

g0.25(u12) = (u12)

g0.5(u13) = (u13)

g0.25(u14) = (u11, u14)

g0.5(u15) = (u15)

Step 2: covering original dataset.
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As in the previous two cases, the hierarchical granule coverage method will also be

used here for a more meaningful comparison of the final granulation effect.

The granules that make up the coverage of the original collection have been

marked with underline.

g0.25(u1) = (u1, u2, u3, u4, u5)

g0.5(u2) = (u1, u2, u5)

g0.5(u3) = (u3)

g0.5(u4) = (u4)

g0.25(u5) = (u1, u2, u3, u4, u5)

g0.5(u6) = (u6)

g0.5(u7) = (u7)

g0.5(u8) = (u8)

g0.25(u9) = (u9)

g0.5(u10) = (u10)

g0.25(u11) = (u11, u14)

g0.25(u12) = (u12)

g0.5(u13) = (u13)

g0.25(u14) = (u11, u14)

g0.5(u15) = (u15)

Step 3: creating reflection dataset from coverage.

Within each granule as before, a majority vote is conducted for the selection of the

value of each attribute and ties are decided at random. This means that the

solution is not deterministic and subsequent runs of granulation may yield slightly

different objects in the coverage set.
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Table 3.6: Reflection dataset for radius homogeneous granulation.

sepal_length sepal_width petal_length petal_width iris class

4.6 3.2 1.4 0.2 1
7.0 3.2 4.7 1.4 2
6.4 3.2 4.5 1.5 2
6.9 3.1 4.9 1.5 2
5.5 2.3 4.0 1.3 2
6.5 2.8 4.6 1.5 2
6.3 2.9 5.6 2.5 3
5.8 2.7 5.1 1.9 3
7.1 3.0 5.9 2.1 3
6.5 3.0 5.8 2.2 3

3.3. Experimental session

3.3.1. Methodology

The research carried out within the framework of this chapter is aimed at indicating

the differences that occur in collections with original data and data granulated

using the homogeneous method, as well as the differences in the data comparing

other granulation techniques.

To indicate the differences, three areas were adopted within which these

differences were studied. The first is the change in dataset size after granulation

and its effect on the change in class balance. The next is to indicate how entropy

changed in these datasets, and the last is the effect of granulation on classification

measures for the original and granulated datasets. Common techniques were used

to reduce the effects of randomness in the results obtained in the form of

cross-validation and permutation tests.

3.3.2. Results

Impact of homogeneous granulation on new dataset sizes

Due to the use of a random granule selection mechanism in the process of covering

the original harvest, 10 passes of homogeneous granulation were carried out

through each dataset. The averaged results are presented in the table 3.7.
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Table 3.7: Aggregated reflection sizes after 10 times homogeneous granulation
process.

dataset objects total original size % of size reduction
mean min max

adult 23513.00 23434 23652 45222 48.01
australian 350.80 340 368 690 49.16
australian dummy 355.00 335 372 689 48.48
breast 445.80 436 462 569 21.65
heart 164.60 157 170 303 45.68
iris 79.70 74 84 150 46.87
mushroom num. encoded 53.90 42 62 5643 99.04
pima 624.20 615 637 768 18.72
red wine 1161.60 1150 1171 1599 27.35
white wine 3509.30 3492 3526 4898 28.35
wine merged 4661.60 4643 4685 6497 28.25

As can be seen in the table 3.7 the size of the collections was reduced in each case,

starting at 18.72% reduction for the pima indian diabetes set, through a reduction of

nearly 50% for the adult, australian, heart and iris sets, until a reduction of about

99% for the mushroom set, which, as can be seen, is characterized by a lower

diversity of features among the individual observations.

Presented below are box plots for each dataset and 10 results of homogeneous

granulation in the context of the size of the reflection set. Four of them, i.e.

mushroom, wine merged, adult and breast, have visible outliers, which can testify to

quite a high diversity of objects. This works well for the latter three sets, while the

outliers in the mushroom set are due to the very small size of the granuled set and

hence the large spread in the data.

As a result of homogeneous granulation, the balance of classes in each dataset

has also changed and is as follows.
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Figure 3.1: Box plots presenting a distribution of reflection set sizes for the iris,
australian and australian_dummy datasets.

Figure 3.2: Box plots presenting a distribution of reflection set sizes for the heart
desease, pima diabetes and breast cancer datasets.

Table 3.8: Class balance after 10 times homogeneous granulation.

dataset cover class balance (mean)

adult random 1: 9076, 0: 14437
australian random 1.0: 170, 0.0: 181
australian dummy random 0.0: 190, 1.0: 165
breast random 0: 252, 1: 194
heart random 1.0: 86, 0.0: 79
iris random 2.0: 30, 1.0: 16, 3.0: 33
mushroom random 1: 22, 0: 32
pima random 0.0: 379, 1.0: 245
red wine random 5.0: 465, 6.0: 462, 3.0: 10, 7.0: 154, 8.0: 17, 4.0: 53
white wine random 7.0: 635, 5.0: 1037, 4.0: 150, 6.0: 1533, 8.0: 130, 3.0: 20, 9.0: 5
wine merged random 7.0: 788, 6.0: 1996, 5.0: 1502, 4.0: 203, 8.0: 146, 3.0: 30, 9.0: 5
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Figure 3.3: Box plots presenting a distribution of reflection set sizes for the
mushroom numeric encoded, red wine and white wine datasets.

Figure 3.4: Box plots presenting a distribution of reflection set sizes for the wine
merged and adult datasets.

Comparing this table with the original balance of classes presented in the 2.4.2, we

can see:

— adult dataset: the original balance, which was about 3:1 (34014:11208 for 0:1

labels), has changed to about 5:3 (14437:9076), so the imbalance has

decreased,

— australian dataset: from the original balance about 4:3 (383:307 for 0:1 labels),

there was a change close to 1:1 (17:18),
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— australian dummy dataset: originally about 4:3 (382:307 for 0:1 labels), and after

granulation the imbalance slightly decreased to 190:165,

— breast dataset: originally about 7:4 (357:212, for 0:1 labels), and after granulation

the imbalance decreased to about 5:4 (252:194),

— heart dataset: originally around 14:16 (138:165 for 0:1 labels), after granulation

almost perfectly balanced 79:86,

— iris dataset: for labels 1,2,3 the balance was perfect in the original dataset and

was 50:50:50, and after granulation the balance was disturbed to 16:30:33

respectively,

— red wine dataset: the original dataset is strongly imbalanced, with the

dominance of two classes (5 and 6), and the original balance for labels

3,4,5,6,7,8 is 10:53:681:638:177:18, and after granulation is 10:53:465:462:154:17

respectively, and has improved, although the collection is still strongly

imbalanced,

— white wine dataset: from the original balance for labels 3:4:5:6:7:8:9 of

20:163:1457:2198:880:175:5 was obtained, respectively,

20:150:1037:1533:635:130:5, that is, the balance also improved,

— wine merged dataset: from the merged collection of both types of wines from

the original balance for classes 3,4,5,6,7,8,9 of 30:216:2137:2836:1079:193:5 was

obtained respectively 30:203:1502:1996:788:146:5, which also improved

balance, but the abundance of the two extreme classes is originally so low that

the collection is still strongly imbalanced.

Entropy

Entropy is a measure derived from information theory and indicates the uncertainty

that exists in the data. It is closely related to the distribution of values in a given

sample and is interpreted somewhat differently for binomial and polynomial

distributions. Here the measure was used for multiclass data. The base of the

logarithm that was adopted in the research conducted is 2. That is, the entropy

score is expressed in bits (also called ’shannons’) of information, according to the

formula presented by Claud Shannon in [40]:

H = −
n∑

x=1

P (x) logr P (x) (3.4)
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where n is space of possible values of x, P (x) is a probability of getting x, and r is a

logarithm base.

Below is a detailed table with the calculated entropy for the original datasets and

the homogenized datasets.

Table 3.9: Entropy for original dataset and homogeneously granuled datasets for
every feature.

dataset feature entropy homgran entropy entropy diff

iris sepal_length 4.82 4.52 -0.30

iris sepal_width 4.01 3.78 -0.23

iris petal_length 5.03 4.82 -0.21

iris petal_width 4.07 4.10 0.03

australian 0 0.91 0.90 -0.00

australian 1 8.18 7.54 -0.65

australian 2 7.07 6.54 -0.52

australian 3 0.82 0.83 0.01

australian 4 3.50 3.44 -0.06

australian 5 1.78 1.72 -0.07

australian 6 5.90 5.54 -0.35

australian 7 1.00 0.98 -0.02

australian 8 0.98 0.97 -0.01

australian 9 2.53 2.34 -0.19

australian 10 0.99 1.00 0.00

australian 11 0.50 0.60 0.10

australian 12 5.74 5.20 -0.54

australian 13 5.19 3.68 -1.50

australian dummy a1 0.91 0.90 -0.00

australian dummy a2 8.19 7.57 -0.62

australian dummy a3 7.06 6.69 -0.37

australian dummy a7 5.90 5.58 -0.32

australian dummy a8 1.00 0.99 -0.00

Continued on next page
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dataset feature entropy homgran entropy entropy diff

australian dummy a9 0.99 0.98 -0.01

australian dummy a10 2.53 2.37 -0.16

australian dummy a11 0.99 1.00 0.00

australian dummy a13 5.74 5.17 -0.57

australian dummy a14 5.18 3.77 -1.41

australian dummy a4_1 0.79 0.79 0.00

australian dummy a4_2 0.79 0.80 0.01

australian dummy a4_3 0.03 0.05 0.02

australian dummy a5_1 0.39 0.27 -0.12

australian dummy a5_10 0.22 0.21 -0.01

australian dummy a5_11 0.51 0.53 0.02

australian dummy a5_12 0.04 0.03 -0.01

australian dummy a5_13 0.33 0.30 -0.03

australian dummy a5_14 0.31 0.27 -0.04

australian dummy a5_2 0.26 0.21 -0.05

australian dummy a5_3 0.42 0.44 0.02

australian dummy a5_4 0.38 0.40 0.02

australian dummy a5_5 0.11 0.13 0.02

australian dummy a5_6 0.40 0.32 -0.07

australian dummy a5_7 0.31 0.28 -0.03

australian dummy a5_8 0.75 0.76 0.02

australian dummy a5_9 0.45 0.49 0.04

australian dummy a6_1 0.41 0.28 -0.13

australian dummy a6_2 0.07 0.08 0.01

australian dummy a6_3 0.09 0.13 0.04

australian dummy a6_4 0.98 0.97 -0.00

australian dummy a6_5 0.42 0.45 0.03

australian dummy a6_7 0.07 0.05 -0.02

australian dummy a6_8 0.72 0.73 0.01

australian dummy a6_9 0.09 0.10 0.01

Continued on next page
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dataset feature entropy homgran entropy entropy diff

australian dummy a12_1 0.41 0.46 0.05

australian dummy a12_2 0.45 0.52 0.07

australian dummy a12_3 0.09 0.14 0.05

heart age 5.08 4.91 -0.16

heart sex 0.90 0.87 -0.03

heart cp 1.74 1.80 0.06

heart trestbps 4.70 4.30 -0.40

heart chol 7.04 6.48 -0.56

heart fbs 0.61 0.54 -0.07

heart restecg 1.09 1.14 0.05

heart thalach 6.17 5.79 -0.37

heart exang 0.91 0.89 -0.02

heart oldpeak 4.13 3.77 -0.36

heart slope 1.29 1.27 -0.02

heart ca 1.67 1.59 -0.08

heart thal 1.30 1.28 -0.02

pima 0 3.48 3.55 0.06

pima 1 6.75 6.72 -0.03

pima 2 4.79 4.73 -0.06

pima 3 4.59 4.55 -0.03

pima 4 4.68 4.49 -0.19

pima 5 7.59 7.49 -0.11

pima 6 8.83 8.58 -0.25

pima 7 5.03 5.12 0.09

breast 0 8.73 8.46 -0.27

breast 1 8.82 8.50 -0.33

breast 2 8.98 8.58 -0.40

breast 3 9.05 8.66 -0.39

breast 4 8.78 8.40 -0.38

breast 5 9.04 8.63 -0.40

Continued on next page
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dataset feature entropy homgran entropy entropy diff

breast 6 9.00 8.65 -0.35

breast 7 9.01 8.66 -0.35

breast 8 8.62 8.28 -0.34

breast 9 8.90 8.55 -0.35

breast 10 9.05 8.66 -0.39

breast 11 8.97 8.59 -0.38

breast 12 9.02 8.64 -0.38

breast 13 9.00 8.63 -0.38

breast 14 9.07 8.69 -0.38

breast 15 9.05 8.67 -0.38

breast 16 8.98 8.63 -0.36

breast 17 8.89 8.55 -0.34

breast 18 8.89 8.53 -0.36

breast 19 9.07 8.67 -0.40

breast 20 8.72 8.45 -0.27

breast 21 8.95 8.56 -0.39

breast 22 8.95 8.57 -0.38

breast 23 9.06 8.66 -0.41

breast 24 8.54 8.25 -0.29

breast 25 9.01 8.63 -0.38

breast 26 9.00 8.66 -0.35

breast 27 8.83 8.52 -0.31

breast 28 8.90 8.55 -0.36

breast 29 9.03 8.65 -0.39

mushroom num 1 1.34 1.61 0.26

mushroom num 2 1.55 1.62 0.07

mushroom num 3 2.47 2.58 0.10

mushroom num 4 0.99 0.88 -0.11

mushroom num 5 1.97 2.20 0.23

mushroom num 6 0.03 0.07 0.04

Continued on next page
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dataset feature entropy homgran entropy entropy diff

mushroom num 7 0.68 0.75 0.07

mushroom num 8 0.54 0.91 0.37

mushroom num 9 2.75 2.58 -0.17

mushroom num 10 1.00 0.95 -0.05

mushroom num 11 1.35 1.57 0.23

mushroom num 12 1.25 0.74 -0.51

mushroom num 13 1.44 1.07 -0.37

mushroom num 14 1.88 1.15 -0.74

mushroom num 15 1.91 1.13 -0.78

mushroom num 16 0.00 0.00 0.00

mushroom num 17 0.02 0.13 0.12

mushroom num 18 0.20 0.67 0.47

mushroom num 19 1.37 0.90 -0.47

mushroom num 20 1.85 2.13 0.28

mushroom num 21 2.04 2.09 0.05

mushroom num 22 1.93 2.19 0.26

red wine fixed acidity 5.94 5.97 0.03

red wine volatile acidity 6.39 6.38 -0.01

red wine citric acid 5.87 5.87 -0.01

red wine residual sugar 4.78 4.77 -0.01

red wine chlorides 6.22 6.26 0.04

red wine free sulfur dioxide 5.08 5.04 -0.04

red wine total sulfur dioxide 6.60 6.54 -0.07

red wine density 7.96 7.92 -0.04

red wine pH 5.91 5.91 0.01

red wine sulphates 5.73 5.71 -0.02

red wine alcohol 5.19 5.24 0.05

white wine fixed acidity 5.06 5.10 0.03

white wine volatile acidity 5.34 5.37 0.03

white wine citric acid 5.35 5.35 0.00

Continued on next page
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dataset feature entropy homgran entropy entropy diff

white wine residual sugar 7.19 7.07 -0.12

white wine chlorides 5.63 5.64 0.01

white wine free sulfur dioxide 6.06 6.05 -0.01

white wine total sulfur dioxide 7.39 7.39 0.00

white wine density 8.85 8.78 -0.07

white wine pH 5.91 5.92 0.02

white wine sulphates 5.42 5.44 0.02

white wine alcohol 5.56 5.58 0.02

wine merged fixed acidity 5.47 5.51 0.03

wine merged volatile acidity 5.96 5.98 0.02

wine merged citric acid 5.64 5.65 0.01

wine merged residual sugar 6.92 6.82 -0.11

wine merged chlorides 6.31 6.32 0.01

wine merged free sulfur dioxide 6.06 6.03 -0.02

wine merged total sulfur dioxide 7.72 7.71 -0.01

wine merged density 8.95 8.91 -0.04

wine merged pH 6.01 6.01 0.00

wine merged sulphates 5.72 5.73 0.01

wine merged alcohol 5.51 5.53 0.02

wine merged wine color 0.81 0.81 0.00

adult age 5.65 5.59 -0.06

adult workclass 1.42 1.58 0.16

adult fnlwgt 14.40 13.58 -0.82

adult education 2.92 2.85 -0.06

adult education-num 2.92 2.85 -0.06

adult marital-status 1.82 1.45 -0.37

adult occupation 3.40 3.31 -0.09

adult relationship 2.14 1.72 -0.42

adult race 0.77 0.65 -0.13

adult sex 0.91 0.76 -0.15

Continued on next page
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dataset feature entropy homgran entropy entropy diff

adult capital-gain 0.87 0.98 0.12

adult capital-loss 0.52 0.57 0.05

adult hours-per-week 3.44 3.17 -0.27

adult native-country 0.82 0.70 -0.13

The decrease in entropy for individual features of the given sets after granulation

seems natural because of the way the mechanism of creating a new reflective set

through majority voting is able to remove noise from the data in the form of feature

values that occur infrequently in similar objects. The increase in entropy after the

granulation process is the result of the same mechanism, but where the most

frequent feature values in the voted granule are equidistant and randomly selected,

which can generate entirely new observations in the set, or affect the change in the

distribution for a given feature so that uncertainty increases.

Below is a table with the summed nominal and percentage difference for each

dataset.

Table 3.10: Entropy change after homogeneous granulation - summary for each
dataset.

dataset entropy homgran. entropy entropy change percent. change

adult 41.99 39.76 -2.23 -5.32 %
australian 45.08 41.27 -3.80 -8.44 %
australian dummy 48.76 45.23 -3.53 -7.23 %
breast 267.93 257.10 -10.83 -4.04 %
heart 36.62 34.64 -1.98 -5.40 %
iris 17.93 17.22 -0.71 -3.97 %
mushroom num 28.57 27.93 -0.64 -2.25 %
pima 45.74 45.22 -0.52 -1.14 %
red wine 65.66 65.59 -0.07 -0.10 %
white wine 67.75 67.68 -0.07 -0.10 %
wine merged 71.08 71.00 -0.08 -0.11 %

The entropy column represents the summed entropy for a given original dataset,

homgran. entropy is the summed entropy for a set granulated by the homogeneous

method, entropy change is the nominal change as homgran. entropy − entropy and

percent. change expresses this change in percentage points.
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It can be seen that for each set there was a reduction in entropy, although these

changes are small, and in the case of 7 datasets even very small, below the

threshold of statistical significance.

The classification results will give us an additional answer to the question "How

does homogeneous granulation affect the preservation of intrinsic knowledge of

individual data sets?", also in the context of comparing it with the standard and

concept dependent granulation techniques presented earlier.

Table with classification results after homogeneous granulation is presented below.

Table 3.11: Classification results for homogeneous granulation.

dataset classifier acc bal. acc prec. macro recall macro f1 macro

adult decision_tree 0.93 0.94 0.89 0.94 0.91

adult knn 0.75 0.70 0.68 0.70 0.68

adult log_regression 0.78 0.63 0.71 0.63 0.64

adult mlp 0.75 0.50 0.81 0.50 0.64

adult naive_bayes 0.79 0.63 0.73 0.63 0.65

adult random_forest 0.84 0.72 0.84 0.72 0.75

adult svm 0.93 0.87 0.96 0.87 0.90

adult xgboost 0.88 0.84 0.85 0.84 0.84

australian decision_tree 0.89 0.89 0.89 0.89 0.89

australian knn 0.71 0.71 0.71 0.71 0.71

australian log_regression 0.86 0.85 0.85 0.85 0.85

australian mlp 0.52 0.50 0.57 0.50 0.62

australian naive_bayes 0.77 0.75 0.79 0.75 0.75

australian random_forest 0.90 0.90 0.90 0.90 0.90

australian svm 0.68 0.68 0.76 0.68 0.66

australian xgboost 0.93 0.94 0.93 0.94 0.93

australian_dummy decision_tree 0.88 0.87 0.87 0.87 0.87

australian_dummy knn 0.71 0.71 0.71 0.71 0.71

australian_dummy log_regression 0.85 0.86 0.85 0.86 0.85

australian_dummy mlp 0.56 0.50 0.56 0.50 0.71

Continued on next page
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dataset classifier acc bal. acc prec. macro recall macro f1 macro

australian_dummy naive_bayes 0.77 0.76 0.79 0.76 0.76

australian_dummy random_forest 0.90 0.89 0.90 0.89 0.89

australian_dummy svm 0.70 0.70 0.74 0.70 0.68

australian_dummy xgboost 0.94 0.94 0.94 0.94 0.94

breast decision_tree 0.98 0.98 0.97 0.98 0.98

breast knn 0.93 0.93 0.93 0.93 0.93

breast log_regression 0.96 0.95 0.96 0.95 0.95

breast mlp 0.63 0.50 0.63 0.50 0.77

breast naive_bayes 0.94 0.93 0.95 0.93 0.94

breast random_forest 0.99 0.98 0.99 0.98 0.98

breast svm 0.95 0.94 0.97 0.94 0.95

breast xgboost 0.99 0.99 0.99 0.99 0.99

heart decision_tree 0.85 0.86 0.86 0.86 0.85

heart knn 0.70 0.71 0.71 0.71 0.70

heart log_regression 0.85 0.85 0.85 0.85 0.85

heart mlp 0.52 0.50 0.52 0.50 0.68

heart naive_bayes 0.84 0.83 0.84 0.83 0.83

heart random_forest 0.91 0.91 0.92 0.91 0.91

heart svm 0.73 0.70 0.83 0.70 0.69

heart xgboost 0.91 0.92 0.91 0.92 0.91

iris decision_tree 0.99 0.99 0.99 0.99 0.99

iris knn 0.97 0.97 0.97 0.97 0.97

iris log_regression 0.97 0.97 0.97 0.97 0.97

iris mlp 0.84 0.84 0.88 0.84 0.86

iris naive_bayes 0.95 0.95 0.95 0.95 0.95

iris random_forest 0.99 0.99 0.99 0.99 0.99

iris svm 0.98 0.98 0.99 0.98 0.98

iris xgboost 0.99 0.99 0.99 0.99 0.99

mushroom decision_tree 0.91 0.91 0.91 0.91 0.91

mushroom knn 0.82 0.78 0.83 0.78 0.78

Continued on next page
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dataset classifier acc bal. acc prec. macro recall macro f1 macro

mushroom log_regression 0.77 0.75 0.75 0.75 0.75

mushroom mlp 0.69 0.63 0.71 0.63 0.69

mushroom naive_bayes 0.71 0.64 0.78 0.64 0.63

mushroom random_forest 0.97 0.96 0.97 0.96 0.96

mushroom svm 0.90 0.88 0.92 0.88 0.89

mushroom xgboost 0.95 0.95 0.95 0.95 0.95

pima decision_tree 0.93 0.94 0.92 0.94 0.93

pima knn 0.79 0.76 0.77 0.76 0.77

pima log_regression 0.77 0.72 0.75 0.72 0.73

pima mlp 0.65 0.50 0.67 0.50 0.75

pima naive_bayes 0.77 0.73 0.75 0.73 0.74

pima random_forest 0.81 0.77 0.81 0.77 0.78

pima svm 0.93 0.90 0.95 0.90 0.92

pima xgboost 0.97 0.97 0.96 0.97 0.96

red_wine decision_tree 0.92 0.96 0.90 0.96 0.92

red_wine knn 0.59 0.32 0.50 0.32 0.47

red_wine log_regression 0.59 0.27 0.56 0.27 0.53

red_wine mlp 0.41 0.17 0.42 0.17 0.55

red_wine naive_bayes 0.57 0.37 0.36 0.37 0.43

red_wine random_forest 0.64 0.28 0.72 0.28 0.57

red_wine svm 0.70 0.35 0.81 0.35 0.56

red_wine xgboost 0.94 0.96 0.94 0.96 0.94

white_wine decision_tree 0.94 0.97 0.92 0.97 0.95

white_wine knn 0.57 0.31 0.49 0.31 0.41

white_wine log_regression 0.50 0.21 0.41 0.21 0.43

white_wine mlp 0.45 0.14 0.45 0.14 0.62

white_wine naive_bayes 0.45 0.31 0.35 0.31 0.33

white_wine random_forest 0.57 0.23 0.67 0.23 0.42

white_wine svm 0.75 0.43 0.87 0.43 0.59

white_wine xgboost 0.76 0.69 0.74 0.69 0.71

Continued on next page
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dataset classifier acc bal. acc prec. macro recall macro f1 macro

wine_merged decision_tree 0.93 0.97 0.92 0.97 0.94

wine_merged knn 0.58 0.31 0.59 0.31 0.40

wine_merged log_regression 0.52 0.20 0.41 0.20 0.39

wine_merged mlp 0.44 0.14 0.42 0.14 0.58

wine_merged naive_bayes 0.40 0.37 0.25 0.37 0.24

wine_merged random_forest 0.56 0.21 0.61 0.21 0.47

wine_merged svm 0.71 0.37 0.85 0.37 0.51

wine_merged xgboost 0.70 0.65 0.67 0.65 0.63

Comparison of balanced accuracy results for nil-case and homogeneous

granulation is presented in the table3.12.

Table 3.12: Balanced accuracy comparison between nil-case classification and
homogeneous granulation classification.

dataset classifier nil balanced_accuracy homgran balanced_accuracy

adult decision_tree 0.75 0.94

adult knn 0.62 0.70

adult logistic_regression 0.63 0.63

adult mlp 0.50 0.50

adult naive_bayes 0.63 0.63

adult random_forest 0.72 0.72

adult svm 0.50 0.87

adult xgboost 0.79 0.84

australian decision_tree 0.81 0.89

australian knn 0.67 0.71

australian logistic_regression 0.86 0.85

australian mlp 0.65 0.50

australian naive_bayes 0.78 0.75

australian random_forest 0.86 0.90

Continued on next page
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dataset classifier nil balanced_accuracy homgran balanced_accuracy

australian svm 0.50 0.68

australian xgboost 0.85 0.94

australian_dummy decision_tree 0.81 0.87

australian_dummy knn 0.65 0.71

australian_dummy logistic_regression 0.86 0.86

australian_dummy mlp 0.68 0.50

australian_dummy naive_bayes 0.81 0.76

australian_dummy random_forest 0.86 0.89

australian_dummy svm 0.52 0.70

australian_dummy xgboost 0.86 0.94

breast decision_tree 0.92 0.98

breast knn 0.92 0.93

breast logistic_regression 0.95 0.95

breast mlp 0.58 0.50

breast naive_bayes 0.93 0.93

breast random_forest 0.95 0.98

breast svm 0.50 0.94

breast xgboost 0.95 0.99

heart decision_tree 0.74 0.86

heart knn 0.63 0.71

heart logistic_regression 0.83 0.85

heart mlp 0.64 0.50

heart naive_bayes 0.81 0.83

heart random_forest 0.83 0.91

heart svm 0.50 0.70

heart xgboost 0.78 0.92

iris decision_tree 0.96 0.99

iris knn 0.96 0.97

iris logistic_regression 0.97 0.97

iris mlp 0.97 0.84

Continued on next page
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dataset classifier nil balanced_accuracy homgran balanced_accuracy

iris naive_bayes 0.96 0.95

iris random_forest 0.96 0.99

iris svm 0.97 0.98

iris xgboost 0.96 0.99

mushroom_num decision_tree 1.00 0.91

mushroom_num knn 1.00 0.78

mushroom_num logistic_regression 0.96 0.75

mushroom_num mlp 1.00 0.63

mushroom_num naive_bayes 0.62 0.64

mushroom_num random_forest 0.98 0.96

mushroom_num svm 1.00 0.88

mushroom_num xgboost 1.00 0.95

pima decision_tree 0.66 0.94

pima knn 0.68 0.76

pima logistic_regression 0.72 0.72

pima mlp 0.64 0.50

pima naive_bayes 0.71 0.73

pima random_forest 0.71 0.77

pima svm 0.50 0.90

pima xgboost 0.69 0.97

red_wine decision_tree 0.33 0.96

red_wine knn 0.23 0.32

red_wine logistic_regression 0.27 0.27

red_wine mlp 0.22 0.17

red_wine naive_bayes 0.31 0.37

red_wine random_forest 0.26 0.28

red_wine svm 0.25 0.35

red_wine xgboost 0.30 0.96

white_wine decision_tree 0.33 0.97

white_wine knn 0.23 0.31

Continued on next page
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dataset classifier nil balanced_accuracy homgran balanced_accuracy

white_wine logistic_regression 0.20 0.21

white_wine mlp 0.18 0.14

white_wine naive_bayes 0.29 0.31

white_wine random_forest 0.21 0.23

white_wine svm 0.24 0.43

white_wine xgboost 0.29 0.69

wine_merged decision_tree 0.33 0.97

wine_merged knn 0.21 0.31

wine_merged logistic_regression 0.19 0.20

wine_merged mlp 0.19 0.14

wine_merged naive_bayes 0.26 0.37

wine_merged random_forest 0.21 0.21

wine_merged svm 0.24 0.37

wine_merged xgboost 0.28 0.65

The above table is presented below in a series of charts.
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Figure 3.5: Bar plot nil-case vs homogeneous granulation balanced accuracy for
adult dataset.
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Figure 3.6: Bar plot nil-case vs homogeneous granulation balanced accuracy for
australian dataset.
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Figure 3.7: Bar plot nil-case vs homogeneous granulation balanced accuracy for
australian dummy dataset.
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Figure 3.8: Bar plot nil-case vs homogeneous granulation balanced accuracy for
breast dataset.

A comparison of the nil-case classification results for the experiments performed

gives good results. It can be seen in many cases that the balanced accuracy

increases after granulation of the data, but there are also cases where it is lower

than with the original data, but they are few.

Looking at the results at the level of individual classifiers, we can see a rule of

thumb, such that the results for decision tree, xgboost and svm improve for

granulated data. The only exception to it is the mushroom num set, whose size

after granulation is small, which can affect the selection of samples for train and

test sets even with many permutations and it can be more imbalanced than the

original data. The balanced accuracy metric for nil-case is equal to 1.0, so it is

difficult to improve the results here. This may mean that homogeneous granulation

improves the linear separability of observations of a given set. A special case of

much better results for the aforementioned algorithms are wine-related data sets,

i.e. red wine, white wine and the merged set (enriched with an additional column

with wine color) - wine merged. Here the improvement in balanced accuracy is 2-3

times. A detailed analysis of the classification of individual classes and
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Figure 3.9: Bar plot nil-case vs homogeneous granulation balanced accuracy for
heart dataset.

observations could give a definitive answer about the reasons for such

improvement. Another classifier whose results are the same or slightly better than

for nil-case is random forest and knn. The results for the naive-bayes, logistic

regression classifiers oscillate around the results for the nil-case.

Noteworthy are the outlier results of the mlp classifier, which are at best

comparable to those of nil-case, but usually significantly worse than them. It should

be noted, however, that for nil-case of the mlp results are the lowest achieved by the

classifiers tested, which may indicate an inappropriate choice of hyperparameters.

To improve the comparability of the results no preprocessing such as

normalization/standardization of the data was carried out, and the classifier

parameters for all the experiments are the same.

112



Figure 3.10: Bar plot nil-case vs homogeneous granulation balanced accuracy for iris
dataset.

Figure 3.11: Bar plot nil-case vs homogeneous granulation balanced accuracy for
mushroom num dataset.
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Figure 3.12: Bar plot nil-case vs homogeneous granulation balanced accuracy for
pima dataset.

Figure 3.13: Bar plot nil-case vs homogeneous granulation balanced accuracy for red
wine dataset.
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Figure 3.14: Bar plot nil-case vs homogeneous granulation balanced accuracy for
white wine dataset.

Figure 3.15: Bar plot nil-case vs homogeneous granulation balanced accuracy for
wine merged dataset.
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3.4. Conclusions

Homogeneous granulation is an effective method of reducing the size of a dataset

to preserve the information contained in it, as proven by the classification results

for the original and granulated data using this method. The additional

computational overhead of granulation may be worth taking in many cases to

reduce the number of parameters of the machine learning model both at the

learning stage and the subsequent utilization of less memory of the learned model.

The greater the homogeneity of the set, the better the effect of granulation and thus

the approximation of the granulated set.



4. Epsilon homogeneous granulation

In this section, we present an extension of the homogeneous granulation technique

to a variant that works on numerical data - the epsilon homogeneous granulation

method. In this variant, by creating homogeneous granules by randomising objects

and creating a group of training objects around them that are discernible in the

lowest possible degree with no contradiction, we use the degree of indiscernibility

of descriptors when comparing varepsilon descriptors. As in homogeneous

ordinary granulation, the radius of granulation is set adaptively. Once the granules

are formed, a similar procedure of covering and generation of new objects follows.

The final result is a granular decision system that is a reflection of the original

training one. A characteristic feature of this method is the need to apply a degree of

indiscernibility of the descriptors in the Majority Voting procedure. In order to test

the effectiveness of this method, we assumed its use in a classification scenario

where the granular training systems were the new training systems. We used

selected decision systems from the UCI repository, and an example kNN classifier.

The method demonstrated its classification performance with a significant

redaction of the number of objects relative to the training system.

4.1. Motivation

The main purpose of creating this method was to adapt homogeneous granulation

for application to numerical data. We introduced the r-indiscernibility factor during

the granulation procedure. And we have designed the mechanisms used in

granularity applying this additional parameter in relevant other places, e.g. in

Majority Voting.
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4.2. Relevant definitions

Let us start by recalling the definition of standard rough inclusion.

µ(v, u, r)⇔ |Ind(u, v)|
|A|

≥ r (4.1)

where

IND(u, v) = {a ∈ A : a(u) = a(v)}, (4.2)

It follows that this rough inclusion extends the indiscernibility relation to a degree

of r.

4.2.1. ε–modification of the standard rough inclusion

Given a parameter ε valued in the unit interval [0, 1], we define the set

Indε(u, v) = {a ∈ A : dist(a(u), a(v)) ≤ ε}, (4.3)

and, we set

µε(v, u, r)⇔
|Indε(u, v)|
|A|

≥ r (4.4)

The rough inclusion extends the indiscernibility relation to a degree of r.

4.2.2. Definition of homogeneous epsilon granules and granulation steps

Granules can be represented as follows:

gε,homogenous
ru = {v ∈ U : |gε−cd

ru | − |g
ε
ru| == 0, for minimal ru fulfills the equation}

where

gε,cdru (u) = {v ∈ U :
INDε(u, v)

|A|
≤ ru AND d(u) == d(v)}

and

gεru(u) = {v ∈ U :
INDε(u, v)

|A|
≤ ru}

ru = { 0

|A|
,
1

|A|
, ...,
|A|
|A|
}
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INDε(u, v) = {a ∈ A :
|a(u)− a(v)|
maxa −mina

≤ ε}

where maxa, mina are the maximal and minimal attribute values for a ∈ A in the

original data set.

Coverage of the original training system is analogous to that of normal

homogeneous granulation. That is, we form random granules until all objects have

been used.

In forming the final form of the objects, we apply a degree of indiscernibility in the

Majority Voting procedure of the form |a(ui)−a(uj)|
maxa−mina

≤ ε, i, j are the numbers of objects

in granule.

4.2.3. Metrics for granulation and classification

The Hamming metric - for symbolic data is defined as

dH(u, v) = |{a ∈ A : a(u) ̸= a(v)}|. (4.5)

ε-normalized Hamming metric is a modification for numerical, for given ε, is

defined as

dH,ε(u, v) = |{a ∈ A :
|a(u)− a(v)|
maxa −mina

> ε}|. (4.6)

4.2.4. k-NN method for evaluation of epsilon homogeneous granulation

The k-NN classifier use modified epsilon Hamming metric, where the descriptors

are treated as indiscernible in case |a(u)−a(v)|
maxa−mina

≤ ε. The similar form of this

classification was proposed in [30].

Procedure

Step 1. Granulated training data set (Gtrn
rgran , A, d) and the test decision set (Utst, A, d)

have been chosen, where A is a set of conditional attributes, d the decision

attribute, and, rgran a granulation radius.

Step 2. Classification of test objects by means of granules of training objects is

performed as follows.

For all conditional attributes a ∈ A, training objects v ∈ Gtrn, and test objects

u ∈ Utst, we compute weights w(u, v) based on the ε-normalized Hamming metric.
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In the voting procedure of the kNN classifier, we use optimal k estimated by CV5

(Cross Validation with 5 folds), details of the procedure are highlighted in next

section.

If the cardinality of the smallest training decision class is less than k, we apply the

value for k = |the smallest training decision class|.

The test object u is classified by means of weights computed for all training objects

v. Weights are sorted in increasing order as,

wc1
1 (u, vc11 ) ≤ wc1

2 (u, vc12 ) ≤ . . . ≤ wc1
|C1|(u, v

c1
|C1|);

wc2
1 (u, vc21 ) ≤ wc2

2 (u, vc22 ) ≤ . . . ≤ wc2
|C2|(u, v

c2
|C2|);

. . .

wcm
1 (u, vcm1 ) ≤ wcm

2 (u, vcm2 ) ≤ . . . ≤ wcm
|Cm|(u, v

cm
|Cm|),

where C1, C2, ..., Cm are all decision classes in the training set.

Based on computed and sorted weights, training decision classes vote by means of

the following parameter, where c runs over decision classes in the training set,

Concept_weightc(u) =
k∑

i=1

wc
i (u, v

c
i ). (4.7)

Finally, the test object u is classified into the class c with a minimal value of

Concept_weightc(u).

After all test objects u are classified, the quality parameter of accuracy, acc is

computed, according to the formula

acc =
number of correctly classified objects

number of classified objects
.
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Table 4.1: Estimated parameters for kNN based on 5×CV5
name optimal k

Australian − credit 5
German − credit 18

Heartdisease 19
Hepatitis 3

4.2.5. Parameter estimation in kNN classifier

The parameter for experiments were estimated in [30]. The optimal k is presented

in Table 4.1.

4.2.6. Toy example of epsilon homogeneous granulation

Considering training decision system

Table 4.2: Training data system (Utrn, A, d), (a sample from australian credit data
set), for varepsilon = 0.05

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 d
u1 1 20.17 8.17 2 6 4 1.96 1 1 14 0 2 60 159 1
u2 1 34.92 5 2 14 8 7.5 1 1 6 1 2 0 1001 1
u3 1 58.58 2.71 2 8 4 2.415 0 0 0 1 2 320 1 0
u4 1 29.58 4.5 2 9 4 7.5 1 1 2 1 2 330 1 1
u5 0 19.17 0.58 1 6 4 0.585 1 0 0 1 2 160 1 0
u6 1 23.08 2.5 2 8 4 1.085 1 1 11 1 2 60 2185 1
u7 0 21.67 11.5 1 5 3 0 1 1 11 1 2 0 1 1
u8 1 27.83 1 1 2 8 3 0 0 0 0 2 176 538 0
u9 1 41.17 1.33 2 2 4 0.165 0 0 0 0 2 168 1 0
u10 1 41.58 1.75 2 4 4 0.21 1 0 0 0 2 160 1 0
u11 1 22.5 0.12 1 4 4 0.125 0 0 0 0 2 200 71 0
u12 1 33.17 3.04 1 8 8 2.04 1 1 1 1 2 180 18028 1
u13 1.234 22.08 11.46 2 4 4 1.585 0 0 0 1 2 100 1213 0
u14 0 58.67 4.46 2 11 8 3.04 1 1 6 0 2 43 561 1
u15 1 33.5 1.75 2 14 8 4.5 1 1 4 1 2 253 858 1
u16 0 18.92 9 2 6 4 0.75 1 1 2 0 2 88 592 1
u17 1 20 1.25 1 4 4 0.125 0 0 0 0 2 140 5 0
u18 1 19.5 9.58 2 6 4 0.79 0 0 0 0 2 80 351 0
u19 0 22.67 3.8 2 8 4 0.165 0 0 0 0 2 160 1 0
u20 1 17.42 6.5 2 3 4 0.125 0 0 0 0 2 60 101 0
u21 1 41.42 5 2 11 8 5 1 1 6 1 2 470 1 1
u22 1 20.67 1.25 1 8 8 1.375 1 1 3 1 2 140 211 0
u23 1 48.08 6.04 2 4 4 0.04 0 0 0 0 2 0 2691 1
u24 0 28.17 0.58 2 6 4 0.04 0 0 0 0 2 260 1005 0
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Table 4.3: Granular decision system formed from Covering granules

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 d
g0.5(u2) 1 34.92 5 2 14 8 7.5 1 1 6 1 2 0 1001 1

g0.571429(u3) 1 58.58 2.71 2 8 4 0.165 0 0 0 0 2 320 1 0
g0.5(u5) 0 19.17 0.58 2 6 4 0.21 1 0 0 0 2 160 1 0
g0.5(u6) 1 20.17 8.17 2 6 4 1.96 1 1 14 1 2 60 159 1
g0.5(u7) 0 21.67 11.5 1 5 3 0 1 1 11 1 2 0 1 1
g0.5(u8) 1 27.83 1.33 1 2 4 0.165 0 0 0 0 2 176 1 0

g0.642857(u12) 1 33.17 3.04 1 8 8 2.04 1 1 1 1 2 180 18028 1
g0.571429(u13) 1.234 22.08 11.46 2 4 4 1.585 0 0 0 1 2 100 1213 0
g0.5(u16) 0 20.17 8.17 2 6 4 1.96 1 1 14 0 2 60 561 1

g0.642857(u18) 1 19.5 9.58 2 6 4 0.79 0 0 0 0 2 80 351 0
g0.642857(u20) 1 22.5 1.33 2 4 4 0.165 0 0 0 0 2 168 1 0
g0.5(u21) 1 34.92 5 2 14 8 7.5 1 1 6 1 2 0 1001 1

g0.642857(u22) 1 20.67 1.25 1 8 8 1.375 1 1 3 1 2 140 211 0
g0.642857(u23) 1 48.08 6.04 2 4 4 0.04 0 0 0 0 2 0 2691 1

Epsilon Homogeneous granules for all training objects:

g0.571429(u1) = (u1), g0.5(u2) = (u2, u4, u15, u21), g0.571429(u3) = (u3, u9, u19, u20),

g0.5(u4) = (u1, u2, u4, u6, u21), g0.5(u5) = (u5, u10, u19, u24), g0.5(u6) = (u1, u4, u6),

g0.5(u7) = (u7), g0.5(u8) = (u8, u9, u11, u17), g0.642857(u9) = (u9, u10, u11, u17, u19, u20),

g0.642857(u10) = (u9, u10, u19), g0.642857(u11) = (u9, u11, u17, u19, u20),

g0.642857(u12) = (u12), g0.571429(u13) = (u13), g0.428571(u14) = (u2, u14, u16, u21),

g0.5(u15) = (u2, u12, u15, u21), g0.5(u16) = (u1, u14, u16), g0.642857(u17) = (u9, u11, u17, u20),

g0.642857(u18) = (u18), g0.571429(u19) = (u3, u9, u10, u11, u17, u19, u20, u24),

g0.642857(u20) = (u9, u11, u17, u19, u20), g0.5(u21) = (u2, u4, u14, u15, u21),

g0.642857(u22) = (u22), g0.642857(u23) = (u23), g0.642857(u24) = (u24),

Granules covering training system by random choice:

Covering granules: g0.5(u2) = (u2, u4, u15, u21), g0.571429(u3) = (u3, u9, u19, u20),

g0.5(u5) = (u5, u10, u19, u24), g0.5(u6) = (u1, u4, u6), g0.5(u7) = (u7),

g0.5(u8) = (u8, u9, u11, u17), g0.642857(u12) = (u12), g0.571429(u13) = (u13),

g0.5(u16) = (u1, u14, u16), g0.642857(u18) = (u18), g0.642857(u20) = (u9, u11, u17, u19, u20),

g0.5(u21) = (u2, u4, u14, u15, u21), g0.642857(u22) = (u22), g0.642857(u23) = (u23),

Granular decision system from above granules is as follows:
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Table 4.4: Data Sets description
name attr type attr no. obj no. class no.

Australian − credit categorical, integer, real 15 690 2
German − credit categorical, integer 21 1000 2

Heartdisease categorical, real 14 270 2
Hepatitis categorical, integer, real 20 155 2

4.3. Experimental Session

To verify effectiveness and to obtain first sight on behaviour of epsilon

homogeneous granulation we have performed a series of experiments with data

from UCI Repository [16] - see Tab. 4.4. We have implemented the tests in C++. The

model we used is multiple cross validation 5. The main classifier used to verify the

protection of internal knowledge in the process of granulation was k-NN with

modified epsilon hamming metric. The optimal values of k that were used in this

research where the ones identified in [30] and presented in Table 4.1. Seeing the

results for considered data in [30] we used ε = 0.05 in granulation and

classification.

The result of experiments is presented in Table 4.5. The approximation quality

seems to be comparable with our best previous methods. To show the difference

we published the result for concept dependent granulation in Table 4.6. In Table 4.5

we can see also the result for homogeneous granulation dedicated to symbolic

data. We observed a slight lowering of granular decision system size for

varepsilon-homogeneous granulation in comparison with homogeneous

granulation with similar result of classification. Due to the lack of space we have

shown only exemplary results.

4.4. Section summary

In this section, we have presented our new technique of homogeneous granulation

in a variant for numerical data.

We have defined the relevant elements necessary to implement this technique in

practice. In this, we have modified the granularity peaks to take into account
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Table 4.5: The result for homogeneous granulation (HG) and for epsilon
homogeneous granulation (ε − HGS) - 5 times CV5 method; HG_acc = average
accuracy for HG, ε − HG_acc average accuracy for ε − HGS, HGS_size = HG
decision system size, ε−HGS_size = ε−HGS decision system size, TRN_size =
training set size, HGTRN_red =reduction in object number in training set for
HG, ε − HGS_size =reduction in object number in training set for ε − HGS,
HG_r_range =spectrum of radii for HG, ε − HG_r_range = spectrum of radii for
ε−HGS

results Australian − credit German − credit Heartdisease Hepatitis
HG_acc 0.835 0.725 0.833 0.88

ε − HG_acc 0.842 0.725 0.831 0.87
HGS_size 286.52 513.3 120.5 46.16

ε − HGS_size 274.52 503 109.4 46.2
TRN_size 552 800 216 124

HGTRN_red 48.1% 35.8% 44.2% 62.8%
εHGTRN_red 50.3% 37.1% 49.4% 62.7%
HG_r_range ru ≥ 0.5 ru ≥ 0.6 ru ≥ 0.461 ru ≥ 0.579

ε − HG_r_range ru ≥ 0.571 ru ≥ 0.65 ru ≥ 0.615 ru ≥ 0.579

Table 4.6: Summary of results, k-NN vs Naive Bayes Classifier, granular and non
granular case, acc=accuracy of classification, red=percentage reduction in object
number, r=granulation radius, method=variant of Naive Bayes classifier

name k − NN(acc, red, r) k − NN.nil(acc)
Australian − credit 0.851, 71.86, 0.571 0.855

Car Evaluation 0.865, 73.23, 0.833 0.944
Diabetes 0.616, 74.74, 0.25 0.631

German − credit 0.724, 59.85, 0.65 0.73
Heartdisease 0.83, 67.69, 0.538 0.837

Hepatitis 0.884, 60, 0.632 0.89
Nursery 0.696, 77.09, 0.875 0.578

SPECTF Heart 0.802, 60.3, 0.114 0.779

the distance between descriptors. We defined a matching variant of the Majority

Voting method and an appropriate kNN classifier procedure, a dedicated classifier

for our problem. In the experimental section, we see that the epsilon variant of

homogeneous granulation offers the possibility to effectively reduce the number of

objects in the training systems - up to approximately 50 per cent - while preserving

the internal knowledge of the training systems - as measured by the quality of

the classifier. The radii for homogeneous ε granulation are, in many cases, larger

than those for homogeneous ordinary granulation, because the granules transition

to homogeneous form more quickly. Classification results for both methods are

comparable, but for homogeneous ε granulation we obtained a better reduction

in training set size. The results are promising the method works effectively on

numerical data. The designed methodology offers the possibility of future methods

working on data withmixed values. In our variants, data is treated either symbolically

or numerically.



Part III

Selected applications of knowledge granulation

techniques in data analysis problems



5. A Novel Ensemble Model - The Random

Granular Reflections

Ensemble methods are a family of techniques that are very important in the field of

data science, often ranking at the forefront of data analysis methods. The

effectiveness of ensemble methods stems from the fact that they use a

mechanism for tuning the classification in successive learning iterations, applying

the available knowledge in a random manner or using a mechanism to focus on

problems that have not yet been learned correctly. In this chapter, we present our

new technique, which is the result of many years of work on approximation

techniques for decision-making systems - the Ensemble of Random Granules. We

use the previously discussed homogeneous granules - (see Chapter 3) - as learning

components in successive iterations. At the start of the algorithm, we cover the

training decision system with homogeneous granules - groups of objects from the

same class for each central object that are irreducible from each other to the

maximum possible degree. Starting with the inclusion of completely indiscernible

objects in the granule, we descend with our indiscernibility requirements until we

encounter the first object that contradicts the class of the object on which we

create the granule. Then, for each granule of homogeneous coverage, we produce a

new object using the chosen strategy - e.g. majority voting. The produced objects

take part in the classification process of the test systems. Our results from this

chapter show the positive effect of enhancing classification with random granules.

The results are comparable to other popular ensemble methods. A very important

advantage of this technique is that there is no need for parameter estimation -

granulation radii (the degree to which objects are to be indiscernible in order to

form granules). Because the formed granule around the selected object spans the

data and its size depends on the internal degree of indiscernibility.

In the following sections, we introduce the details needed to understand our

Ensemble model. First of all, our technique is derived from the underlying
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granulation scheme introduced by Polkowski [25]. In the standard method, a set of

objects indiscernible to a fixed degree (radius of granulation) is calculated around

each object of the training system, using objects from all available decision

classes. The chosen strategy (e.g. random selection) is then applied to cover the

calculated granules of the training system, finally creating new objects from the

selected granules using the chosen method, e.g. Majority Voting (MV). A

characteristic feature of this method, is that it works effectively for medium-sized

radii. The advantage is the simplicity of implementation and speed of operation.

The disadvantage is that for small radii close to 0, certain decision classes may not

be included in the produced granular reflection, so that classification efficiency may

be reduced. The described method has become the foundation for a number of

further methods for approximation of decision systems, classification, absorption

of missing values, creation of novel ensemble models, application in

steganography, in the area of deep learning, and many other data science

problems. Examples of works from the area of approximation of decision systems

are [1]–[2], [24]–[27], [30]. They present a concept-dependent method (forming

granules in the area of decision classes) securing the participation of all classes in

the classification process. And the layered granulation method, showing

successive degrees of approximation of decision systems, by repeating the

granulation process. In the papers [33] and [34]) we developed a new granulation

method, a homogeneous variant (see details Section 3) Considering a training

system (U,A, d), where U is a universe of objects, A a set of conditional attributes,

and d a decision attribute not belonging to A. The homogeneous method is based

on the creation of granules from r indiscernible objects on at least r ∗ |A| attributes,

where |A|. The degree of granulation is determined adaptively depending on the

degree of indiscernibility of the decision system.

The Ensemble methods are a family of techniques that are among the best for

operating with tabular data, and their effectiveness has been verified in many

contexts, including in the area of rough sets ( see [15, 17, 37, 41]). The main

motivation for the creation of the custom ensemble model was the creation of a

homogeneous granulation technique. The method is based on the use of random

homogeneous granules in the learning process, finally forming the coverage of the

original training system and creating its granular reflection. The aim of this
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operation is to reduce the size of the training system while preserving the

knowledge contained within it, as measured by the effectiveness of the classifier. In

the case of homogeneous granulation, the level of reduction in the number of

objects depends on the decision-making system used and is close to 50 per cent.

Let us present the method in detail, for simplicity we will treat attributes as

symbolic. In the experiential session, we used a CSG classifier based on simple

knowledge granules ( see [3]). We perform 50 learning iterations in each

compositional exponent. We make a comparison of our own method with selected

ensemble models. The computational complexity of the homogeneous technique

is |U |2|A|, U is the universe of objects, A is the set of conditional attributes.

The method can be applied to large data sets, examples of the effectiveness of

similar models can be seen in the works, [10] in the context of data streaming, in in

[8] the context of data decomposition, [9] in the context of random sampling.

Let us proceed with a brief introduction to the ins and outs of the selected

ensemble methods.

5.1. Selected Ensemble models - in a nut shell

We can find an interesting overview of Ensemble methods in the paper [49]). One of

the most popular are the Bagging and Boosting methods (see [45]) and Random

Forest (see [14]). What our model is comparable to is boosting and multiple

bootstrap, hence we will focus on example models of this type.

5.1.1. Bagging - ensemble of bootstraps

. This involves randomly selecting a committee of bootstraps [49]. After dividing

the original decision system into train and valid systems, we determine the number

of learning iterations in which we randomly select |train| objects with returns from

the train system forming NewTraini systems. In the ith learning iteration, we

classify the valid system in two ways, by classifying it with the current NewTraini

system and by applying the cumulative committee of all previous classifications -

using the Majority Voting method to determine decisions.
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5.1.2. Arcing - ensemble of bootstraps

The model we use here is to divide the train system into the NewTrain, NewTest

system (see [6] and [38]). The partitioning is implemented on a Bootstrap basis,

weights are used to assign objects to the NewTrain set. The weights are initialised

with equal values, when classifying NewTest with NewTrain the weights for which

the classification was correct are lowered. Finally, the weights are appropriately

normalised to a representation that allows the objects to be drawn. We will call the

Bootstrap formation algorithm Arcing. The final step of this technique is to classify

the valid system using NewTrain from a single iteration and using the committee

of classifiers that have been formed up to that point. In arcing, the weights are

modified using the 1−acc
acc

factor. Where acc is the percentage of correctly classified

objects.

5.1.3. Ada-Boost with random split

A similar technique to Arcing, NewTrain and NewTest are created differently (see

[18], [39] and [50]). The objects for NewTrain are selected based on weights, and a

fixed factor is used to divide Train. The splitting factor is chosen experimentally -

in our case it is equal to 0.6 (close to the expected degree of splitting when using

Bootstrap). The rest of the algorithm works analogously to Arcing.

5.2. Ensemble of Random Granular Reflections

Each learning step of the Ensemble model uses a different granular reflection

formed from random homogeneous granules covering the entire training system in

each iteration. The random overlap results in granular reflections formed from

other subgroups of objects - intuitively the problem is solved applying slightly

different knowledge. You can see the concept of our model in figure 5.1.
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Figure 5.1: Ensemble of Random Granular Reflections

5.3. Experimental Session

Our main goal is to test the extent to which homogeneous granules forming

granular reflections of training systems extract knowledge from these systems. To

this end, we will recalculate our model for selected decision systems from the UCI

repository and contrast the classification with an ensemble model formed from

subsets of random objects of objects without the contribution of homogeneous

granulation. As a complementary element, we will present a sample of how our

method works, compared to several other ensemble models - pure bagging,

bootstrap ensemble, ada-boost. We omit the random forest, because in its case we

would have to use subsets of attributes, before forming granular systems and

methods work differently, incomparably.

5.3.1. Comparison with selected other methods

In figures 5.2, 5.3, 5.4 and 5.5 we have results comparing the effectiveness of

single classifiers vs those formed from their cumulative committee. The results

show on the exemplary data - Australian credit data set - the process of

130



classification amplification for the methods: Ensemble of Random Granules, Arcing

- ensemble of bootstraps, Ada-Boost and Bagging - ensemble of bootstraps.

The results of Ensemble of random granules are comparable to the other methods

presented. Of course, its effectiveness depends on the data and classifiers used.

We will verify this in example experiments.
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Figure 5.2: Ensemble of Random Granular Reflections for the Australian credit data
set - the accuracy of classification - 50 iterations of learning - exemplary run

Figure 5.3: Bagging Ensemble model for the Australian credit data set - the accuracy
of classification - 50 iterations of learning - exemplary run
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Figure 5.4: Ada-Boost Ensemble model for the Australian credit data set - the
accuracy of classification - 50 iterations of learning - exemplary run

Figure 5.5: Pure Bagging Ensemble model for the Australian credit data set - the
accuracy of classification - 50 iterations of learning - exemplary run
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5.3.2. Results for selected other decision-making systems - multiple runs

In this section we give a sample of the results, how the ensemble of random

granules method behaves on different data. We chose Decision Tree as the

reference classifier. In the variant, in order to achieve minimally valuable granular

systems, we used two new elements. The first is to give the possibility to use the

same objects multiple times within a single granule and we have introduced the

possibility to accept objects from other classes.

134



Figure 5.6: Ensemble of Random Granular Reflections for the Iris data set - the
accuracy of classification - 50 iterations of learning - exemplary run; Decision Tree
classifier
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Figure 5.7: Ensemble of Random Granular Reflections for the Australian credit data
set - the accuracy of classification - 50 iterations of learning - exemplary run; Decision
Tree classifier
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Figure 5.8: Ensemble of RandomGranular Reflections for theHeart Disease data set
- the accuracy of classification - 50 iterations of learning - exemplary run; Decision
Tree classifier
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Figure 5.9: Ensemble of Random Granular Reflections for the Pima indians diabetes
data set - dummy version - the accuracy of classification - 50 iterations of learning -
exemplary run; Decision Tree classifier
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5.3.3. Testing the performance of other popular classification techniques on

selected data

In the second example experiment, we demonstrate the operation of several other

classifiers for the selected system, including, in addition to Decision Tree, the

operation of Random Forest, kNN and Naive Bayes methods. As can be seen,

Random Forests and Decision Tree work well with our method on the selected data,

while kNN and Naive Bayes work less well. We can see the results in Figures 5.10,

5.11 and 5.12 respectively.
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Figure 5.10: Ensemble of RandomGranular Reflections for the Australian credit data
set - the accuracy of classification - 50 iterations of learning - exemplary run; Random
Forest classifier
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Figure 5.11: Ensemble of Random Granular Reflections for the Australian credit data
set - the accuracy of classification - 50 iterations of learning - exemplary run; k
Nearest Neighbor classifier
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Figure 5.12: Ensemble of Random Granular Reflections for the Australian credit data
set - the accuracy of classification - 50 iterations of learning - exemplary run; Naive
Bayes classifier
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5.3.4. The operation of the technique on unbalanced data.

The granulation technique we use generally produces representatives from all

decision classes of the training system and is partially robust to unbalanced data

[13], [11]. We can see research results on this problem in the chapter on the

application of SMOTE in 7.3. It is natural that a suitable classifier has to be fitted to

the unbalanced data and the evaluation of the classification quality should be

computed using balanced parameters - equally representing each decision class of

the test system.

5.3.5. A few words about the degree of homogeneity

An interesting question may be the problem of whether there is a minimum radius

ru for which the standard and concept dependent granule are equal defining the

homogeneous granule used in our model. For standard granules of radius 1 the

granules contain their central objects or objects completely indiscernible from

them. In the case of concept-dependent granules, they also contain their centra but

cannot contain objects completely indiscernible from other classes. That is, in this

variant, the existence of conflicting objects does not stop the granulation process.

In the process of learning homogeneous granules, a concept-dependent granule is

generated which does not contain contradictory objects in the given degree of

indiscernibility to which we have descended. That is, a homogeneous granule is a

special case of a concept-dependent granule, but this rule does not necessarily

work in reverse. In the case of a 1-radius, it may happen that a homogeneous

granule does not contain any object, this situation occurs when the central object

of the granule has a completely indiscernible object in another class. In our

experiments, we assume that the systems used do not contain completely

contradictory objects, to avoid the impossibility of calculating homogeneous

granules. The discussion will be summarised in Tab. 5.1, which shows for the

selected systems the relevant degrees of indiscernibility (homogeneous) of the

radii_range. The degree of homogeneity is greater the lower the minimum value is.

This is shown by the smallest radius encountered among all granules.
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Table 5.1: The result for homogeneous granulation, 5 × CV 5, GS_size =
granular decision system size, TRN_size = training set size, TRN_reduction =
reduction in object number in training size, radii_range = spectrum of radii.

name GS_size TRN_size TRN_reduction radii_range
Australian credit 286.52 552 48.1% ru ≥ 0.5
Car Evaluation 728.5 1382 47.3% ru ≥ 0.667

Diabetes 488.9 614 20.4% ru ≥ 0.25
German− credit 513.3 800 35.8% ru ≥ 0.6
Heartdisease 120.5 216 44.2% ru ≥ 0.461
Hepatitis 46.16 124 62.8% ru ≥ 0.579
Nursery 9009.1 10368 13.1% ru ≥ 0.875

SPECTF Heart 138.75 214 35.2% ru ≥ 0.068

5.4. A few final words

Our new method has demonstrated effectiveness in enhancement of classification

over successive learning iterations. Ensemble of Random Granular Reflections

effectiveness is comparable to methods such as Bagging, Boosting. In Figs. 5.6,

5.7, 5.8 and 5.9 we have the results for the systems, iris, australian, heart and pima

indian diabetes, respectively. As can be seen, effectiveness depends on the data

used. It is worth noting the average size of the granules used for the classification.

They represent, respectively, for Iris 18.56 per cent of the original training system,

for Australian 1.53, for Heart 3.58 and for pima 4.64 per cent. That is, with a large

reduction in the size of granular systems, efficiency is maintained and can be

effectively enhanced. An example in which the method works poorly is the Pima

indians diabetes system - see Fig. 5.9. The use of even small-scale granular

systems in the Ensemble model, as can be seen, yields very promising results. This

research opens up a wide horizon for the application of granular methods in

Ensemble models.



Figure 5.13: Average size of granular systems used in the classification. Despite
the use of such small representations, drawing knowledge from the entire original
training system, granular systems generated on random central objects show the
ability to reinforce classifiers at the level of using the original training data process
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6. Missing values handling based on

homogeneous granulation

Granularity techniques from Polkowski’s family of methods, further developed by

Artiemjew and Ropiak, among others, have found application in the process of

absorbing missing values. It turns out that the process of creating granular

reflections naturally eliminates these values. In this section, we will explore the

applicability of our new granulation technique, the homogeneous method [33], in

the context mentioned above. Four strategies of missing values absorption were

considered - A, B, C and D strategy. Initial experiments, in which we use selected

strategies (A - D) are available in Polkowski and Artiemjew [29], [28] and [29] - what

was extensively checked on data from UCI Repository in [30]. We begin with a

details of strategies chosen by us.

6.0.1. A set of basic strategies

We consider missing values in four various cases,

1. Strategy A: during building granules ∗=don’t care, in repairing of not absorbed

values ∗, ∗=don’t care.

2. Strategy B: during building granules ∗=don’t care, in repairing of not absorbed

values ∗, ∗ = ∗.

3. Strategy C: during building granules ∗ = ∗, in repairing of not absorbed values ∗,

∗=don’t care.

4. Strategy D: during building granules ∗ = ∗, in repairing of not absorbed values ∗,

∗ = ∗.

Considering granulation process - in case of A and B strategy, stars are treated as

all possible values. For C and D strategy stars are treated as new values in the

system. Granules in the context of our strategies may be defined as follows:
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In case of ∗ = don′t care - granule building phase is as follows

Considering i− th training data set TRNi - and the phase of granulation, the

granules can be defined as:

gcd,∗=don′t care
rgran (u) = {v ∈ TRNi :

|IND∗=don′t care(u, v)|
|A|

≤ rgran AND d(u) = d(v)},

where

IND∗=don′t care(u, v) = {a ∈ A : a(u) = a(v) OR a(u) = ∗ OR a(v) = ∗}.

In case of ∗ = ∗ - granule building phase is as follows

Granules used in C and D strategies have the form: ,

gcd,∗=∗
rgran (u) = {v ∈ TRNi :

|IND∗=∗(u, v)|
|A|

≤ rgran AND d(u) = d(v)},

where

IND∗=∗(u, v) = {a ∈ A : a(u) = a(v)}.

In case of ∗ = don′t care in the repairing phase

In case of A and C strategies, in order to repair objects containing missing values

after granulation, we immerse objects with stars on specific positions j into original

disturbed training set. We fill the value for the star by means of majority voting on

non missing values of the attribute j.

In case of the strategy A, the granule around the disturbed object

MV (gcd,∗=don′t care
rgran (u)) can be defined as follows,

if aj(MV (gcd,∗=don′t care
rgran (u))) = ∗,

then the missing value could be repaired by the granule,

g
cd,∗=don′t care
rgran,aj

(MV (g
cd,∗=don′t care
rgran

(u))) =

{v ∈ TRNi :
|IND∗=don′t care

aj
(MV (gcd,∗=don′t care

rgran
(u)), v)|

|A|
≤ rgran AND d(MV (g

cd,∗=don′t care
rgran

(u))) = d(v)},

where
IND

∗=don′t care
aj

(MV (g
cd,∗=don′t care
rgran

(u)), v) =

{a ∈ A : (a(MV (g
cd,∗=don′t care
rgran

(u))) = a(v)OR a(MV (g
cd,∗=don′t care
rgran

(u))) = ∗OR a(v) = ∗)AND aj(v)! = ∗}.
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In case of the strategy C , the granule around the disturbed object MV (gcd,∗=∗
rgran (u))

can be defined as follows,

if aj(MV (gcd,∗=∗
rgran (u))) = ∗,

then the missing value could be repaired by the granule,

g
cd,∗=don′t care
rgran,aj

(MV (g
cd,∗=∗
rgran

(u))) =

{v ∈ TRNi :
|IND∗=don′t care

aj
(MV (gcd,∗=∗

rgran
(u)), v)|

|A|
≤ rgran AND d(MV (g

cd,∗=∗
rgran

(u))) = d(v)},

where
IND

∗=don′t care
aj

(MV (g
cd,∗=∗
rgran

(u)), v) =

{a ∈ A : (a(MV (g
cd,∗=∗
rgran

(u))) = a(v)OR a(MV (g
cd,∗=∗
rgran

(u))) = ∗OR a(v) = ∗)AND aj(v)! = ∗}.

In case of ∗ = ∗ in repairing phase

As above, also in case of B and D strategies, in order to repair objects containing

missing values after granulation, we immerse objects with stars on specific

positions j into original disturbed training data set. We fill the star based on

majority voting from non missing values of attribute number j.

In case of the strategy B, the granule around the disturbed object

MV (gcd,∗=don′t care
rgran (u)) can be defined as follows,

g
cd,∗=∗
rgran,aj

(MV (g
cd,∗=don′t care
rgran

(u))) =

{v ∈ TRNi :
|IND∗=∗

aj
(MV (gcd,∗=don′t care

rgran
(u)), v)|

|A|
≤ rgran AND d(MV (g

cd,∗=don′t care
rgran

(u))) = d(v)},

where

IND
∗=∗
aj

(MV (g
cd,∗=don′t care
rgran

(u)), v) = {a ∈ A : a(MV (g
cd,∗=don′t care
rgran

(u))) = a(v)AND aj(v)! = ∗}.

In case of the strategy D, the granule around the disturbed object MV (gcd,∗=∗
rgran (u))

can be defined as follows,

g
cd,∗=∗
rgran,aj

(MV (g
cd,∗=∗
rgran

(u))) =

{v ∈ TRNi :
|IND∗=∗

aj
(MV (gcd,∗=∗

rgran
(u)), v)|

|A|
≤ rgran AND d(MV (g

cd,∗=∗
rgran

(u))) = d(v)},

where

IND
∗=∗
aj

(MV (g
cd,∗=∗
rgran

(u)), v) = {a ∈ A : a(MV (g
cd,∗=∗
rgran

(u))) = a(v)AND aj(v)! = ∗}.
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6.1. Homogeneous granulation in ∗ = ∗ and ∗ = don′t care cases

Considering previously defined IND∗=don′t care(u, v), in case of ∗ = don′t care the

granules are formed as follows,

ghomogenous,∗=don′t care
ru = {v ∈ U : |gcd,∗=don′t care

ru | − |g∗=don′t care
ru | == 0,

for minimal ru fulfills the equation}

where

gcd,∗=don′t care
ru = {v ∈ U :

IND∗=don′t care(u, v)

|A|
≤ ru AND d(u) == d(v)}

and

g∗=don′t care
ru = {v ∈ U :

IND∗=don′t care(u, v)

|A|
≤ ru}

ru = { 0

|A|
,
1

|A|
, ...,
|A|
|A|
}

for ∗ = ∗ variant and previously defined IND∗=∗(u, v) we have:

ghomogenous,∗=∗
ru = {v ∈ U : |gcd,∗=∗

ru | − |g∗=∗
ru | == 0,

for minimal ru fulfills the equation}

where

gcd,∗=∗
ru = {v ∈ U :

IND∗=∗(u, v)

|A|
≤ ru AND d(u) == d(v)}

and

g∗=∗
ru = {v ∈ U :

IND∗=∗(u, v)

|A|
≤ ru}

ru = { 0

|A|
,
1

|A|
, ...,
|A|
|A|
}

6.2. The experimental session - procedures and model settings

In the section we have described the experimental part with results presentation.

We have checked the effectiveness of out techniques on artificially damaged (filled

with 10 percent of missing values) selected data from UCI Repository [16].
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6.2.1. Pseudo-code of experiments design

(i) We uploaded selected data set,

(ii) Data was split according to Cross Validation 5 model,

(iii) Training decision systems TRN complete
i are granulated with use of the selected

method,

(iv) The TSTi are classified using set TRN complete
i by kNN classifier (its the nil

result),

(v) TRN complete
i is filled with ten percent of randomly located stars,

(vi) TRNi is treated by selected missing values handling strategy - A,B,C or D in

granulation process.

(vii) The TSTi systems are classified by repaired granular systems using kNN

classifier,

(viii) The final result is an average from all five tests.

The above CV5 procedure is repeated 5 times, and our result is the average value

from all tests.

6.2.2. The results evaluation

To evaluate our results we have proposed to compute bias of accuracy from 5 ×

CV-5, based on the formula,

AccBias =

∑5
i=1(max(accCV 5

1 , accCV 5
2 , ..., accCV 5

5 )− accCV 5
i )

5
, (6.1)

where

Acc =

∑5
i=1 acc

CV 5
i

5
.

As a reference classifier we use kNN in decision classes, where a class is winning if

the summary distance of k-nearest objects from the class is the smallest.

Parameter k is estimated on the sample of data based on Cross Validation five

method.

We use k = 5 for Australian Credit data set and k = 3 for Pima Indians Diabetes.

6.2.3. The results discussion

The results for classic parameterized concept-dependent granulation are in Tabs.

6.1 and 6.2. For homogeneous granulation are in Tabs. 6.3 and 6.4. As we
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previously checked in [30], granulation is effective in missing values absorption. For

all examined techniques the quality of classification is preserved on damaged data

in comparison with original one - without missing values. In case of granulation

techniques we have additional reduction in object numbers, even up to 80 percent

of original training data size for concept dependent method. Seeing the results in

[30] - the effectiveness of methods and their behavior depends strictly on the type

of data set. For instance for typical data sets with high diversity of attribute values,

like Australian Credit, Pima Indians Diabetes, the result is predictable. And in case

of A and B strategies approximation is faster for lower values of granulation radii,

its because for ∗ = don′t care the granules contain more objects. In case of ∗ = ∗,

the approximation is similar to the nil result, but is slightly slower, because the

stars could increase diversity of the data, and the granules could contain a smaller

number of objects which in consequence gives a larger number of granules in

coverings.

The interpretation of missing values absorption for homogeneous granulation is

significantly different - see Tab 6.3 and 6.4. In case of this technique, damage of

the data increase the number of granules in coverings, the granules became

smaller because the indiscernibility level in decision classes is lowering. It is higher

probability to find the objects, which brake homogeneity of granules. In case of A

and B strategies, the granules are smaller than for C and D, thus in the first one we

have bigger granular decision systems

The methods work in a stable way and results are fully comparable with nil results.

The most advantage of homogeneous granulation is its single run behaviour, where

granulation radius is fixed individually (automatically) for each granule - depends on

the indiscernibility level in each decision class around central objects of granules.
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Table 6.1: Missing values absorption based on Concept dependent granulation;
5 x CV-5; A,B,C,D strategies vs complete data classification; Australian Credit;
; 10 percent of missing values; rgran = Granulation radius; nil = result for data
without missing values; Acc = Accuracy of classification; AccBias = Accuracy bias
defined based on equation efAcccBiasEquation; GranSize = The size of data set
after granulation in the fixed r

Acc AccBias
rgran nil A B C D nil A B C D
0 0.772 0.77 0.77 0.77 0.77 0.009 0.006 0.006 0.006 0.006

0.0714286 0.772 0.77 0.77 0.772 0.772 0.01 0.006 0.006 0.008 0.008
0.142857 0.77 0.77 0.771 0.773 0.773 0.006 0.006 0.007 0.011 0.011
0.214286 0.781 0.766 0.767 0.786 0.785 0.008 0.01 0.012 0.02 0.018
0.285714 0.799 0.775 0.777 0.811 0.81 0.014 0.012 0.007 0.015 0.009
0.357143 0.82 0.786 0.786 0.826 0.832 0.01 0.014 0.014 0.015 0.004
0.428571 0.841 0.806 0.8 0.838 0.838 0.007 0.032 0.012 0.009 0.002

0.5 0.838 0.817 0.818 0.84 0.847 0.005 0.012 0.012 0.008 0.004
0.571429 0.839 0.828 0.826 0.847 0.844 0.006 0.019 0.021 0.007 0.01
0.642857 0.848 0.832 0.826 0.847 0.839 0.007 0.007 0.017 0.007 0.008
0.714286 0.853 0.833 0.841 0.844 0.843 0.009 0.019 0.007 0.011 0.012
0.785714 0.857 0.843 0.843 0.847 0.843 0.007 0.01 0.012 0.008 0.014
0.857143 0.86 0.838 0.838 0.845 0.844 0.007 0.01 0.014 0.01 0.008
0.928571 0.862 0.842 0.841 0.844 0.843 0.005 0.005 0.017 0.014 0.013

1 0.861 0.843 0.843 0.843 0.843 0.004 0.014 0.013 0.014 0.014

GranSize
rgran nil A B C D
0 2 2 2 2 2

0.0714286 2.32 2 2 3 2.96
0.142857 3.24 2.16 2.16 4.64 4.68
0.214286 5.16 2.52 2.52 8.68 8.4
0.285714 8.4 4.04 3.84 16.2 16.32
0.357143 16.08 7.12 6.96 32.44 31.92
0.428571 32 10.08 9.76 72.04 72.24

0.5 70.8 18.28 18 150.04 149.6
0.571429 156.6 34.6 34.72 286.24 284.8
0.642857 318.12 73.44 73.32 438.08 438.28
0.714286 467.6 164.2 164.44 524.64 525.08
0.785714 536.12 325.92 328.04 547 546.96
0.857143 547.16 476.76 476.76 551.28 551.28
0.928571 548.84 537.8 537.36 551.88 551.88

1 552 550.84 550.8 552 552
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Table 6.2: Missing values absorption based on Concept dependent granulation; 5
x CV-5; A,B,C,D strategies vs complete data classification; Pima Indians Diabetes;
Concept dependent granulation; 10 percent of missing values; rgran = Granulation
radius; nil = result for data without missing values; Acc = Accuracy of classification;
AccBias = Accuracy bias defined based on equation efAcccBiasEquation; GranSize
= The size of data set after granulation in the fixed r

Acc AccBias
rgran nil A B C D nil A B C D
0 0.605 0.609 0.609 0.609 0.609 0.009 0.012 0.012 0.012 0.012

0.125 0.608 0.615 0.61 0.609 0.617 0.006 0.009 0.027 0.011 0.019
0.25 0.632 0.624 0.61 0.634 0.62 0.013 0.013 0.015 0.018 0.024
0.375 0.639 0.6 0.602 0.636 0.641 0.009 0.018 0.017 0.02 0.015
0.5 0.649 0.602 0.618 0.647 0.648 0.017 0.02 0.021 0.018 0.02
0.625 0.647 0.614 0.61 0.645 0.646 0.009 0.013 0.026 0.019 0.019
0.75 0.648 0.637 0.639 0.647 0.647 0.009 0.012 0.013 0.029 0.023
0.875 0.648 0.639 0.645 0.65 0.647 0.009 0.015 0.017 0.021 0.023
1 0.648 0.647 0.647 0.647 0.647 0.009 0.023 0.023 0.023 0.023

GranSize
rgran nil A B C D
0 2 2 2 2 2

0.125 35.2 3.16 3.2 33.16 31.68
0.25 155.88 8.96 8.8 145.96 145.44
0.375 365.52 29.04 26.72 364.84 363.6
0.5 540.28 87 84.24 546.72 546.48
0.625 609.72 282.04 282 609.24 609.16
0.75 614.4 491.2 488.04 614.24 614.24
0.875 614.4 593.64 593.6 614.4 614.4
1 614.4 613.64 613.6 614.4 614.4

Table 6.3: Missing values absorption based on Homogeneous granulation; 5
x CV-5; A,B,C,D strategies vs complete data classification; Australian Credit;
Homogeneous granulation; 10 percent of missing values; rgran = Granulation
radius; nil = result for data without missing values; Acc = Accuracy of classification;
AccBias = Accuracy bias defined based on equation efAcccBiasEquation; GranSize
= The size of data set after granulation in the fixed r

Acc AccBias
nil A B C D nil A B C D
0.843 0.841 0.843 0.838 0.841 0.012 0.008 0.015 0.021 0.014

GranSize
nil A B C D

283.64 426.4 424.16 311.48 313.08
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Table 6.4: Missing values absorption based on Homogeneous granulation; 5 x
CV-5; A,B,C,D strategies vs complete data classification; Pima Indians Diabetes;
Homogeneous granulation; 10 percent of missing values; rgran = Granulation
radius; nil = result for data without missing values; Acc = Accuracy of classification;
AccBias = Accuracy bias defined based on equation efAcccBiasEquation; GranSize
= The size of data set after granulation in the fixed r

Acc AccBias
nil A B C D nil A B C D
0.646 0.644 0.646 0.636 0.642 0.026 0.015 0.015 0.02 0.021

GranSize
nil A B C D

490.88 578 577.12 490 492.12

6.3. Section summary

The performance of homogeneous granulation in missing values absorption,

compared to our other granulation techniques is different. Using the variant ∗ =

don′tcare - in the concept-dependent method the granulation process reduces the

diversity of the data, for ∗ = ∗ the diversity can be increased. The granularity is

smaller for strategies C and D than for A and B. Ultimately, the size of the granular

reflections of the training systems is smaller for strategies A and B - the level of

approximation is higher. In addition, the reduction in the size of training decision

systems - in the case of granularity of corrupted systems - is significant compared

to granularity of intact datasets. Missing values increase the level of approximation

in many cases. The absorption of missing values for the homogeneous variant, in

which the granulation radius increases dynamically until the objects in the granules

belong only to the central object class, behave differently. The number of objects in

the homogeneous granulation process increases compared to the null case - where

the granulation process is performed on intact data. For the A and B strategies,

the granules are smaller than for C and D - this is because ∗ = don′tcare breaks the

homogeneity of the decision classes at a higher level than in the ∗ = ∗ case.The level

of approximation decreases in the case of corrupted datasets, as class homogeneity

is affected in all variants. As we intuitively predicted, the homogeneous granulation



process effectively absorbs the missing values and the completed data retain their

effectiveness in terms of classification process.
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Part IV

Study of the influence of over and

undersampling techniques on the quality of the

granulation process



7. Impact of oversampling and undersampling

on data granulation.

7.1. Introduction

Unbalanced data are those in which the number of objects in each class varies. The

degree of imbalance can vary, and so a set with 120 black balls and 80 white balls

will be called slightly imbalanced, and a set with 190 black balls and 10 white balls

can be called strongly or even extremely imbalanced.

The imbalance in the balance of the set has a direct impact on the quality of most

classifier machine learning models hence there is a need to solve such problems. It

is also worth mentioning here the necessity of correct interpretation of

classification measures if model training is carried out on significantly unbalanced

data, where at least accuracy alone will not reflect the true effectiveness of the

model when there is a significant discrepancy in the number of objects in each

class.

Oversampling and undersampling are one way of dealing with unbalanced data

sets, especially in the context of classification problems.

Oversampling

Oversampling involves generating new observations in classes of smaller size, e.g.,

through random drawing with return or more complex mechanisms that add

observations with random noise.

One of the more popular oversampling mechanisms is the SMOTE (Synthetic

Minority Over-sampling Technique) algorithm [7]. It was chosen as the

oversampling algorithm in the experimental session of this work.

The operation of the SMOTE algorithm is to select, using the KNN algorithm, the k

nearest neighbors and, through interpolation, generate new observations "on the

lines" that connect these points, that is, in the feature space of these neighbors.
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A visualization of the performance of the SMOTE algorithm for the selected

attribute of the pima set is shown below. In the graph on the left, you can see the

points in blue represent the values present in the set for the minority class attribute,

and the orange color is the new points generated by the SMOTE algorithm. They are

arranged in the order of their occurrence in the set (y-axis) so that they can be

observed without overlapping with existing observations. In the graph on the right,

these new observations are superimposed on the graph of existing ones, which

illustrates the final set of values of this attribute for the minority class.

Figure 7.1: Visualization of the effects of the SMOTE algorithmon a selected attribute
of the pima set.

Undersampling

Undersampling is a mechanism for removing objects from dominant classes until

data balance is achieved.

Among the algorithms, we can distinguish those that indicate objects that, from the

point of view of the information they carry, are worth keeping, and those that

indicate objects to be removed. The first two below (Near Miss and CNN) are those

that indicate objects to keep, and the last one (Tom Links) indicates objects to

remove.
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Near Miss is a collection of several slightly different oversampling algorithms

proposed by Jianping Zhang in Inderjeet Mani in [48], whose main operation is to

select objects using the distance between majority and minority classes.

In the framework of this algorithm, we distinguish three methods:

— NearMiss-1: observations from the majority class with the smallest average

distance to the three nearest minority class objects are selected,

— NearMiss-2: observations from the majority class with the smallest average

distance to the three most distant minority class objects are selected,

— NearMiss-3: observations from the majority class with the shortest distance to

each minority class object are selected.

Another undersampling algorithm is Condensed Nearest Neighbors (with a rather

confusing acronym today - CNN) proposed by Peter Hart in [12]. The principle of

this algorithm is to build subsets using a random selection of an object, then

selecting k of its nearest neighbors and checking whether the selected object is

classified the same as with the original set. If not, the object is a candidate for

removal. This approach minimizes the removal of objects relevant to the

information carried from the set.

Another undersampling algorithm is the one called Tomek Links first proposed by

Ivan Tomek in [43] as a proposal to modify the Condensed Nearest Neighbors

algorithm. In the CNN algorithm, the points around which neighbors are then

searched for a subset are chosen at random. Ivan Tomek, in proposal two,

presented an approach, for a binary problem, to find two points of different classes

with the smallest Euclidean distance. The undoubted advantage of this approach is

the possibility of determining the boundaries between classes or finding noise,

since only such objects will have opposite classes among their neighbors. The

Tomek links algorithm was also chosen for the experimental part of this chapter.

7.2. Methodology

Sets from the 2.19 table were used for experiments, but only those with two

decision classes. These are:

— australian credit
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— australian credit dummy data (called also australian dummy)

— heart

— pima

— breast

— mushroom

— adult

Initially, the same set of classifiers was chosen as presented in the 2.4.7, but after

analyzing the results from previous experimental sessions for MLP and SVM

classifiers, it was decided to drop them from the final experiments in this part of the

dissertation.

Below is a flow diagram of experiments examining the effects of over and

undersampling on classification results for granular data.

Figure 7.2: Pipeline for over and undersampling experiment pipeline.

A more detailed description of the above scheme is provided below.

Step 1.
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For each dataset, the input data is divided into a training dataset and a test dataset

in the ratio of 70%/30%. This and subsequent steps are repeated 5 times for each

dataset.

Step 2.

The minority class in the training set is searched. Then the same number of

observations as in the minority class are randomly selected from the majority

class. This forms our target training set.

Step 3.

The training data is subjected to a split of 10%/90% to 90%/10% for class c1 and c2,

respectively.

Step 4.

Each unbalanced training set is used as learning data for the selected classifiers,

and then evaluated with a test set - this is the result denoted as imbalanced nil

case. Each of these imbalanced sets is also subjected to granulation, concept

dependent or homogeneous (in two separate experiments), and this case is marked

as imbalanced gran case (imbalanced_hom_gran for homogeneous granulation and

imbalanced_cdgran_radius for concept dependent granulation, separately for two

selected radii of this granulation - 1.0 and 0.5).

Step 5.

Each imbalanced collection is subjected to:

— in scenario 1:

— balanced with the SMOTE algorithm, then training the model for each

classifier and finally testing with a test set. This case is denoted as

balanced_nil.

— then each balanced set resulting from the balancing (previous point in the

list) is also subjected to granulation, and each of the selected classifiers is

trained on this data and finally evaluated on the test data. This case is

marked in the results as balanced gran (annotated with hom_gran or cdgran

for the given granulation method).

— in scenario 2:

— balanced with the SMOTE algorithm, and then using the Tomek algorithm,

the so-called Tomek Links are removed, a selected classifier is trained on the

resulting set and evaluated with a test set. This case is denoted as
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balanced_nil (the three scenarios are carried out independently, hence the

same name in each scenarios results).

— each balanced collection is also subjected to granulation, and each of the

selected classifiers is trained on this data and finally evaluated on the test

data. This case is marked in the results as balanced gran (annotated with

hom_gran or cdgran for the given granulation method).

— in scenario 3:

— first Tomek Links undersampling is applied, and then the training set is

balanced with the SMOTE algorithm. Each classifier is trained on the

resulting set and evaluated with a test set. This case is denoted as

balanced_nil.

— each balanced collection is also subjected to granulation, and each of the

selected classifiers is trained on this data and finally evaluated on the test

data. This case is marked in the results as balanced gran (annotated with

hom_gran or cdgran for the given granulation method).

7.3. Experiments and results

7.3.1. Scenario 1

Below are graphs with classification results for the balanced accuracy metric for

each dataset and classifiers with data series for each case described above (see

legend of graphs). On the vertical axis is the value of the balanced accuracy metric,

and on the horizontal axis is the distribution of data for which this averaged value

was achieved by the test set for the five train/test permutation.
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Figure 7.3: Balanced accuracy plot for SMOTE oversampling experiments for the
australian dataset.
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Figure 7.4: Balanced accuracy plot for SMOTE oversampling experiments for the
australian dummy dataset.
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Figure 7.5: Balanced accuracy plot for SMOTE oversampling experiments for the
heart dataset.
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Figure 7.6: Balanced accuracy plot for SMOTE oversampling experiments for the
pima dataset.
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Figure 7.7: Balanced accuracy plot for SMOTE oversampling experiments for the
breast dataset.
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Figure 7.8: Balanced accuracy plot for SMOTE oversampling experiments for the
mushroom dataset.
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Figure 7.9: Balanced accuracy plot for SMOTE oversampling experiments for the
adult dataset.
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From observing the charts themselves, we can already draw several conclusions.

— The lowest results are usually achieved for training sets resulting from concept

dependent granulation with a radius of 0.5, with no clear advantage for the

imbalanced and imbalanced case. The reason for this is usually the rather large

approximation of the sets at this radius of granulation, which in effect reduces

the size of the feature domain and oversampling does not improve the results

here. It can also be noted that changing the data_balance_split feature does not

change the value of the metric as it usually does for the other cases. Here the

trend for the results is rather sideways. In the other cases, we can usually see

that they converge to a normal distribution. The lateral trend is due to the fact

that the sets granulated within a radius of 0.5 can be very small, and over and

undersampling do not change their size to any significant degree. Small sets

can also cause a slightly larger bias in classification results for decision

tree-based classifiers due to the random selection of objects to build them (via

bootstrapping) which can result in the selection of a very small number of

objects of a given class.

— Not surprisingly, on average, the highest classification metrics are typically

achieved for nil-case balanced data and granularity balanced concept

dependent data with a radius of 1.0. This also coincides with the largest number

of observations in these sets. The advantage in balanced accuracy for these

two mentioned cases can be seen especially with the largest base imbalance of

the training sets i.e. extreme values of data_balance_split such as 10/90, 20/80

or 80/20 and 90/10.

— We can usually see that the best results are achieved for an initial class balance

close to or equal to 50/50 which is common knowledge in supervised learning

issues. This is also the parity one tries to aim for when preprocessing and

preparing data for models, although there are techniques for tuning models that

are trained on strongly or extremely imbalanced data (e.g., class weighting).

Here these techniques have not been applied. Given this fact, we realize that the

case of a 50/50 split of classes is a rather special case, since the application of

the SMOTE algorithm on an imbalanced set does not change its objects to any

extent. This means that the imbalanced nil and balanced nil sets for this split
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are usually identical, and this can be seen in the graph where the balanced

accuracy value converges for these two cases for the 50/50 split.

The following table summarizes all the cases for the way the training set is

prepared with the averaged balanced accuracy value. For an explanation of how

each set was created, see smote-pipeline-description.
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Table 7.1: Training dataset ranking for scenario 1.

data balance balanced accuracy mean

balanced_nil 0.7872
balanced_cdgran_1.0 0.7866
imbalanced_nil 0.7664
imbalanced_cdgran_1.0 0.7658
balanced_hom_gran 0.7535
imbalanced_hom_gran 0.7464
balanced_cdgran_0.5 0.7136
imbalanced_cdgran_0.5 0.7098

Below is a table showing the average balanced accuracy score for each level of

dataset division and for each classifier separately.

Table 7.2: Classifiers ranking - mean balanced accuracy for each tested case and
scenario 1.

data_balance_split classifier balanced accuracy mean

90-10 xgboost 0.750

90-10 random_forest 0.748

90-10 decision_tree 0.735

90-10 logistic_regression 0.725

90-10 naive_bayes 0.721

90-10 knn 0.646

80-20 random_forest 0.801

80-20 xgboost 0.785

80-20 logistic_regression 0.759

80-20 decision_tree 0.758

80-20 naive_bayes 0.729

80-20 knn 0.668

70-30 random_forest 0.820

70-30 xgboost 0.801

70-30 logistic_regression 0.778

70-30 decision_tree 0.766

Continued on next page
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data_balance_split classifier balanced accuracy mean

70-30 naive_bayes 0.736

70-30 knn 0.683

60-40 random_forest 0.832

60-40 xgboost 0.803

60-40 decision_tree 0.785

60-40 logistic_regression 0.783

60-40 naive_bayes 0.738

60-40 knn 0.695

50-50 random_forest 0.833

50-50 xgboost 0.811

50-50 logistic_regression 0.790

50-50 decision_tree 0.781

50-50 naive_bayes 0.737

50-50 knn 0.696

40-60 random_forest 0.828

40-60 xgboost 0.807

40-60 logistic_regression 0.780

40-60 decision_tree 0.780

40-60 naive_bayes 0.739

40-60 knn 0.693

30-70 random_forest 0.814

30-70 xgboost 0.793

30-70 logistic_regression 0.774

30-70 decision_tree 0.769

30-70 naive_bayes 0.737

30-70 knn 0.682

20-80 random_forest 0.794

20-80 xgboost 0.767

20-80 logistic_regression 0.764

20-80 decision_tree 0.755

Continued on next page
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data_balance_split classifier balanced accuracy mean

20-80 naive_bayes 0.733

20-80 knn 0.676

10-90 random_forest 0.749

10-90 xgboost 0.738

10-90 decision_tree 0.734

10-90 logistic_regression 0.734

10-90 naive_bayes 0.715

10-90 knn 0.652
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As we can observe from the above table, the highest value of the balanced

accuracy metric is most often achieved by the random forest algorithm (8 out of 9

splits). Xgboost is the second most effective algorithm in this list where it settles

for the highest measure once and occurs 8 times in second place. The next place

alternates between decision tree or logistic regression. We can also quickly deduce

from the above table that as the difference in class distribution increases, the

effectiveness of classification decreases.

Looking for differences in the results of individual subsets, we can still point to the

balanced accuracy results for homogeneous granulation, the scatter of which is the

smallest among the tested sets, which we can find confirmation in the following

summary in the form of the lowest value of the standard deviation.

Table 7.3: Distribution statistics for each training subset for scenario 1.

data_balance balanced_accuracy
std min 25% 50% 75% max

balanced_cdgran_0.5 0.1187 0.4811 0.6466 0.7095 0.7796 0.9507
balanced_cdgran_1.0 0.1218 0.5315 0.6920 0.7829 0.8940 1.0000
balanced_hom_gran 0.1073 0.5096 0.6734 0.7463 0.8266 0.9743
balanced_nil 0.1213 0.5365 0.6937 0.7816 0.8856 1.0000
imbalanced_cdgran_0.5 0.1181 0.4859 0.6222 0.7053 0.7784 0.9523
imbalanced_cdgran_1.0 0.1330 0.5034 0.6620 0.7625 0.8682 1.0000
imbalanced_hom_gran 0.1097 0.4650 0.6673 0.7387 0.8223 0.9813
imbalanced_nil 0.1325 0.5023 0.6619 0.7663 0.8671 1.0000
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We can also see what the average balanced accuracy value looks like along with

the 95% confidence interval for each dataset when averaging balanced accuracy for

each classifier in the figure 7.10.

Figure 7.10: Balanced accuracy mean and 95% confidence interval for each dataset.

The graph shows how the confidence interval for each data split (x-axis) for

balanced accuracy (y-axis) runs. We can see that for the mushroom set this interval

is the widest, which is due to the extremely high approximation of this set by data

granularity methods, which then results in a small number of objects in the sets

that are used to train the models and the fluctuation of the accuracy metric is much

higher. This can also be seen in the graph 7.8 where the differences in balanced

accuracy for granulated sets are the largest among the sets tested.
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7.3.2. Scenario 2 and scenario 3

The results achieved for scenario 2 and scenario 3 do not differ significantly from

those of scenario 1. Therefore, graphs for each dataset will not be included here,

only some summaries for the scenario and, in particular, summaries for all three

scenarios.

In the table below for scenario 2, the random forest is again the most effective

classifier, coming in first place in 7 out of 8 cases. In second place is, as in scenario

1, the xgboost classifier once in first place and seven times in second place. The

next places go to the classifiers decision tree, logistic regression, naive bayes and

knn, so here there are no significant changes from the results presented in scenario

1.

For scenario 3, the situation is almost identical, except that the random forest

algorithm achieved the highest accuracy for all 8 data splits. The second most

effective classifier is again xgboost. The next places are again occupied by the

logistic regression and decision tree algorithms, with very little difference, although

for the case of the 90/10 data split the naive bayes classifier also reached the 3rd

result.

It can also be noted that the results for scenario 3 are the best of all those tested,

which may indicate that the removal of objects that lie near the "boundaries" of the

two classes, followed by oversampling, introduces fewer new objects that may be

on that boundary, reducing the uncertainty arising from the data.

Table 7.4: Classifiers ranking - mean balanced accuracy for each tested case and all
scenarios.

balance split classifier acc sc. 1 acc sc. 2 acc sc. 3

90-10 xgboost 0.7497 0.7480 0.7540

90-10 random_forest 0.7483 0.7431 0.7624

90-10 decision_tree 0.7354 0.7367 0.7343

90-10 logistic_regression 0.7249 0.7216 0.7353

90-10 naive_bayes 0.7212 0.7187 0.7447

90-10 knn 0.6455 0.6436 0.6456

Continued on next page
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balance split classifier acc sc. 1 acc sc. 2 acc sc. 3

80-20 random_forest 0.8008 0.7979 0.8208

80-20 xgboost 0.7848 0.7805 0.7972

80-20 logistic_regression 0.7594 0.7561 0.7783

80-20 decision_tree 0.7583 0.7622 0.7748

80-20 naive_bayes 0.7287 0.7336 0.7435

80-20 knn 0.6684 0.6635 0.6744

70-30 random_forest 0.8202 0.8184 0.8454

70-30 xgboost 0.8005 0.7988 0.8152

70-30 logistic_regression 0.7775 0.7752 0.7962

70-30 decision_tree 0.7657 0.7728 0.7791

70-30 naive_bayes 0.7355 0.7403 0.7473

70-30 knn 0.6832 0.6790 0.6905

60-40 random_forest 0.8319 0.8343 0.8580

60-40 xgboost 0.8033 0.8068 0.8199

60-40 decision_tree 0.7848 0.7800 0.7836

60-40 logistic_regression 0.7835 0.7870 0.7939

60-40 naive_bayes 0.7378 0.7389 0.7491

60-40 knn 0.6947 0.6896 0.6953

50-50 random_forest 0.8331 0.8348 0.8578

50-50 xgboost 0.8111 0.8068 0.8154

50-50 logistic_regression 0.7901 0.7847 0.7930

50-50 decision_tree 0.7810 0.7762 0.7712

50-50 naive_bayes 0.7373 0.7391 0.7456

50-50 knn 0.6960 0.6882 0.7019

40-60 random_forest 0.8277 0.8296 0.8564

40-60 xgboost 0.8065 0.8051 0.8190

40-60 logistic_regression 0.7798 0.7832 0.7937

40-60 decision_tree 0.7796 0.7759 0.7741

40-60 naive_bayes 0.7387 0.7424 0.7533

40-60 knn 0.6928 0.6909 0.7031

Continued on next page
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balance split classifier acc sc. 1 acc sc. 2 acc sc. 3

30-70 random_forest 0.8140 0.8186 0.8394

30-70 xgboost 0.7929 0.7921 0.8095

30-70 logistic_regression 0.7741 0.7697 0.7817

30-70 decision_tree 0.7694 0.7660 0.7782

30-70 naive_bayes 0.7372 0.7330 0.7449

30-70 knn 0.6819 0.6802 0.6962

20-80 random_forest 0.7938 0.7910 0.8120

20-80 xgboost 0.7675 0.7790 0.7910

20-80 logistic_regression 0.7636 0.7619 0.7710

20-80 decision_tree 0.7547 0.7523 0.7684

20-80 naive_bayes 0.7333 0.7296 0.7335

20-80 knn 0.6757 0.6673 0.6905

10-90 random_forest 0.7490 0.7529 0.7634

10-90 xgboost 0.7385 0.7365 0.7484

10-90 decision_tree 0.7343 0.7313 0.7259

10-90 logistic_regression 0.7340 0.7265 0.7394

10-90 naive_bayes 0.7152 0.7283 0.7189

10-90 knn 0.6518 0.6483 0.6614

There were no significant changes in the summary of averaged balanced accuracy

results for the training sets.

Table 7.5: Training dataset ranking for all scenarios.

balance split acc sc. 1 acc sc. 2 acc sc. 3

balanced_nil 0.7872 0.7872 0.7880
balanced_cdgran_1.0 0.7866 0.7856 0.7863
imbalanced_nil 0.7664 0.7663 0.7663
imbalanced_cdgran_1.0 0.7658 0.7644 0.7658
balanced_hom_gran 0.7535 0.7544 0.7552
imbalanced_hom_gran 0.7464 0.7488 0.7470
balanced_cdgran_0.5 0.7136 0.7117 0.7133
imbalanced_cdgran_0.5 0.7098 0.7035 0.7045
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Finally, for consistency in data presentation, tables are presented with the main

statistics of the distribution of results for Scenarios 2 and 3 separately.

Table 7.6: Distribution statistics for each training subset for scenario 2.

data_balance balanced_accuracy
std min 25% 50% 75% max

balanced_cdgran_0.5 0.1178 0.4699 0.6254 0.7127 0.7746 0.9474
balanced_cdgran_1.0 0.1214 0.5353 0.6881 0.7774 0.8869 1.0000
balanced_hom_gran 0.1064 0.5140 0.6709 0.7446 0.8290 0.9642
balanced_nil 0.1209 0.5404 0.6940 0.7821 0.8880 1.0000
imbalanced_cdgran_0.5 0.1196 0.4764 0.6185 0.6997 0.7744 0.9609
imbalanced_cdgran_1.0 0.1348 0.5028 0.6588 0.7659 0.8700 1.0000
imbalanced_hom_gran 0.1099 0.5038 0.6698 0.7420 0.8278 0.9560
imbalanced_nil 0.1336 0.5016 0.6604 0.7663 0.8707 0.9999

180



Table 7.7: Distribution statistics for each training subset for scenario 3.

data_balance balanced_accuracy
std min 25% 50% 75% max

balanced_cdgran_0.5 0.1161 0.4757 0.6487 0.7111 0.7716 0.9493
balanced_cdgran_1.0 0.1210 0.5294 0.6930 0.7815 0.8894 1.0000
balanced_hom_gran 0.1070 0.5169 0.6751 0.7470 0.8276 0.9688
balanced_nil 0.1204 0.5328 0.6913 0.7844 0.8916 0.9999
imbalanced_cdgran_0.5 0.1176 0.4551 0.6185 0.6990 0.7667 0.9475
imbalanced_cdgran_1.0 0.1330 0.4961 0.6563 0.7680 0.8675 1.0000
imbalanced_hom_gran 0.1096 0.4906 0.6669 0.7465 0.8193 0.9680
imbalanced_nil 0.1327 0.5002 0.6621 0.7736 0.8742 0.9999

7.4. Conclusion

As a result of our experiments, we cannot conclusively state that oversampling and

undersampling have a significant effect on classification results for granular sets.

However, we can conclude with little confidence that the use of undersampling

methods before oversampling methods can have a more positive effect on

classification results than the reverse order of applying data balancing algorithms.

We can also learn from these experiments that training sets subjected to

homogeneous granulation and then classification models built on them achieve

accuracy values with less scatter. We can also determine that the original sets,

whose class distribution will be balanced, allow to achieve the highest values of

classification efficiency.



Part V

Summary



The aim of this study was to develop and test algorithms: develop granulation

techniques - derived from the methods discovered by Prof. Polkowski and apply

them to selected data analysis problems. The main original achievements

presented in the dissertation are:

(1) development of homogeneous granulation and its epsilon variant.

(2) Application of the granulation method in the creation of an ensemble model -

the Ensemble of Random Granules model is presented.

(3) Applications of knowledge granulation techniques in absorbing missing values

were tested.

(4) Finally, the effect of oversampling and undersampling on the granulation

process was investigated.

These results, together with the theoretical considerations carried out, make it

possible to confirm the assumed theses:

(i) Finally, knowledge granulation methods that do not require estimation of optimal

parameters were designed. This included homogeneous granulation and an epsilon

variant of homogeneous granulation. The effectiveness of this method was verified

through the lens of data classification.

(ii) It was verified experientially that granular reflections of decision systems, even

when they are in the form of a few percentages of the original training system retain

classification efficiency and work well as a committee of classifiers - in the

Ensemble model. It was verifiable to test the Ensemble of Random Granules model

and some variant dedicated to the largest possible approximation of decision

systems.

(iii) It has been confirmed in studies that homogeneous granulation variants

effectively absorb missing values while maintaining classification efficiency.

(iv) It has been confirmed in studies that oversampling and undersampling

techniques affect the process of creating granular reflections of decision-making

systems. In particular, the combination of undersampling methods followed by

oversampling has a positive effect on the homogeneous granulation process - in

the sense of improving the quality of classification.

In the course of the research carried out, a number of new themes emerged

concerning application of our granular computing techniques. The author therefore

plans to continue research in this area. In the near future, work is planned to
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include: - Develop other variants of ensemble models, using a selection of other

granulation models - in particular combining multiple granulation models with each

other, - Develop new classification techniques based on homogeneous granulation -

by immersing test objects in granular systems, - Applying the concept of granularity

of our techniques to other data types including images.
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